一维扩展哈伯德模型的贝特解析解

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Haiyang Hou, Pei Sun, Yi Qiao, Xiaotian Xu, Xin Zhang, Tao Yang
{"title":"一维扩展哈伯德模型的贝特解析解","authors":"Haiyang Hou, Pei Sun, Yi Qiao, Xiaotian Xu, Xin Zhang, Tao Yang","doi":"10.1088/1572-9494/ad2c77","DOIUrl":null,"url":null,"abstract":"We construct an integrable 1D extended Hubbard model within the framework of the quantum inverse scattering method. With the help of the nested algebraic Bethe ansatz method, the eigenvalue Hamiltonian problem is solved by a set of Bethe ansatz equations, whose solutions are supposed to give the correct energy spectrum.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"29 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bethe ansatz solutions of the 1D extended Hubbard-model\",\"authors\":\"Haiyang Hou, Pei Sun, Yi Qiao, Xiaotian Xu, Xin Zhang, Tao Yang\",\"doi\":\"10.1088/1572-9494/ad2c77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct an integrable 1D extended Hubbard model within the framework of the quantum inverse scattering method. With the help of the nested algebraic Bethe ansatz method, the eigenvalue Hamiltonian problem is solved by a set of Bethe ansatz equations, whose solutions are supposed to give the correct energy spectrum.\",\"PeriodicalId\":10641,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad2c77\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad2c77","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们在量子反向散射方法的框架内构建了一个可积分的一维扩展哈伯德模型。在嵌套代数贝特安萨特方法的帮助下,特征值哈密顿问题由一组贝特安萨特方程求解,这些方程的解理应给出正确的能谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bethe ansatz solutions of the 1D extended Hubbard-model
We construct an integrable 1D extended Hubbard model within the framework of the quantum inverse scattering method. With the help of the nested algebraic Bethe ansatz method, the eigenvalue Hamiltonian problem is solved by a set of Bethe ansatz equations, whose solutions are supposed to give the correct energy spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Theoretical Physics
Communications in Theoretical Physics 物理-物理:综合
CiteScore
5.20
自引率
3.20%
发文量
6110
审稿时长
4.2 months
期刊介绍: Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of: mathematical physics quantum physics and quantum information particle physics and quantum field theory nuclear physics gravitation theory, astrophysics and cosmology atomic, molecular, optics (AMO) and plasma physics, chemical physics statistical physics, soft matter and biophysics condensed matter theory others Certain new interdisciplinary subjects are also incorporated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信