时分数 Newell-Whitehead 方程和时分数广义 Hirota-Satsuma 耦合 KdV 系统的 Q 同调分析方法

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Di Liu, Qiongya Gu, Lizhen Wang
{"title":"时分数 Newell-Whitehead 方程和时分数广义 Hirota-Satsuma 耦合 KdV 系统的 Q 同调分析方法","authors":"Di Liu, Qiongya Gu, Lizhen Wang","doi":"10.1088/1572-9494/ad2364","DOIUrl":null,"url":null,"abstract":"In this paper, two types of fractional nonlinear equations in Caputo sense, time-fractional Newell–Whitehead equation (FNWE) and time-fractional generalized Hirota–Satsuma coupled KdV system (HS-cKdVS), are investigated by means of the q-homotopy analysis method (q-HAM). The approximate solutions of the proposed equations are constructed in the form of a convergent series and are compared with the corresponding exact solutions. Due to the presence of the auxiliary parameter <italic toggle=\"yes\">h</italic> in this method, just a few terms of the series solution are required in order to obtain better approximation. For the sake of visualization, the numerical results obtained in this paper are graphically displayed with the help of Maple.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"49 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Q-homotopy analysis method for time-fractional Newell–Whitehead equation and time-fractional generalized Hirota–Satsuma coupled KdV system\",\"authors\":\"Di Liu, Qiongya Gu, Lizhen Wang\",\"doi\":\"10.1088/1572-9494/ad2364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, two types of fractional nonlinear equations in Caputo sense, time-fractional Newell–Whitehead equation (FNWE) and time-fractional generalized Hirota–Satsuma coupled KdV system (HS-cKdVS), are investigated by means of the q-homotopy analysis method (q-HAM). The approximate solutions of the proposed equations are constructed in the form of a convergent series and are compared with the corresponding exact solutions. Due to the presence of the auxiliary parameter <italic toggle=\\\"yes\\\">h</italic> in this method, just a few terms of the series solution are required in order to obtain better approximation. For the sake of visualization, the numerical results obtained in this paper are graphically displayed with the help of Maple.\",\"PeriodicalId\":10641,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad2364\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad2364","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文通过 q-homotopy 分析方法(q-HAM)研究了 Caputo 意义上的两类分数非线性方程,即时间分数 Newell-Whitehead 方程(FNWE)和时间分数广义 Hirota-Satsuma 耦合 KdV 系统(HS-cKdVS)。所提方程的近似解是以收敛级数的形式构建的,并与相应的精确解进行了比较。由于该方法中存在辅助参数 h,因此只需要数列解中的几个项就能获得较好的近似解。为直观起见,本文借助 Maple 对数值结果进行了图解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Q-homotopy analysis method for time-fractional Newell–Whitehead equation and time-fractional generalized Hirota–Satsuma coupled KdV system
In this paper, two types of fractional nonlinear equations in Caputo sense, time-fractional Newell–Whitehead equation (FNWE) and time-fractional generalized Hirota–Satsuma coupled KdV system (HS-cKdVS), are investigated by means of the q-homotopy analysis method (q-HAM). The approximate solutions of the proposed equations are constructed in the form of a convergent series and are compared with the corresponding exact solutions. Due to the presence of the auxiliary parameter h in this method, just a few terms of the series solution are required in order to obtain better approximation. For the sake of visualization, the numerical results obtained in this paper are graphically displayed with the help of Maple.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Theoretical Physics
Communications in Theoretical Physics 物理-物理:综合
CiteScore
5.20
自引率
3.20%
发文量
6110
审稿时长
4.2 months
期刊介绍: Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of: mathematical physics quantum physics and quantum information particle physics and quantum field theory nuclear physics gravitation theory, astrophysics and cosmology atomic, molecular, optics (AMO) and plasma physics, chemical physics statistical physics, soft matter and biophysics condensed matter theory others Certain new interdisciplinary subjects are also incorporated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信