通过波诺-梅尔文-兰达时空彩虹引力效应下的克莱因-戈登方程研究标量粒子

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Faizuddin Ahmed, Abdelmalek Bouzenada
{"title":"通过波诺-梅尔文-兰达时空彩虹引力效应下的克莱因-戈登方程研究标量粒子","authors":"Faizuddin Ahmed, Abdelmalek Bouzenada","doi":"10.1088/1572-9494/ad2e88","DOIUrl":null,"url":null,"abstract":"In our investigation, we explore the quantum dynamics of charge-free scalar particles through the Klein–Gordon equation within the framework of rainbow gravity, considering the Bonnor–Melvin-Lambda (BML) space-time background. The BML solution is characterized by the magnetic field strength along the axis of the symmetry direction which is related to the cosmological constant Λ and the topological parameter <italic toggle=\"yes\">α</italic> of the geometry. The behavior of charge-free scalar particles described by the Klein–Gordon equation is investigated, utilizing two sets of rainbow functions: (i) <inline-formula>\n<tex-math>\n<?CDATA $f(\\chi )=\\tfrac{({{\\rm{e}}}^{\\beta \\,\\chi }-1)}{\\beta \\,\\chi }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>f</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>χ</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>=</mml:mo><mml:mstyle displaystyle=\"false\"><mml:mfrac><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\"normal\">e</mml:mi></mml:mrow><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow></mml:mfrac></mml:mstyle></mml:math>\n<inline-graphic xlink:href=\"ctpad2e88ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, <italic toggle=\"yes\">h</italic>(<italic toggle=\"yes\">χ</italic>) = 1 and (ii) <italic toggle=\"yes\">f</italic>(<italic toggle=\"yes\">χ</italic>) = 1, <inline-formula>\n<tex-math>\n<?CDATA $h(\\chi )=1+\\tfrac{\\beta \\,\\chi }{2}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>h</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>χ</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mstyle displaystyle=\"false\"><mml:mfrac><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mstyle></mml:math>\n<inline-graphic xlink:href=\"ctpad2e88ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. Here <inline-formula>\n<tex-math>\n<?CDATA $0\\lt \\left(\\chi =\\tfrac{| E| }{{E}_{p}}\\right)\\leqslant 1$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>0</mml:mn><mml:mo>&lt;</mml:mo><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mi>χ</mml:mi><mml:mo>=</mml:mo><mml:mstyle displaystyle=\"false\"><mml:mfrac><mml:mrow><mml:mo stretchy=\"false\">∣</mml:mo><mml:mi>E</mml:mi><mml:mo stretchy=\"false\">∣</mml:mo></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfrac></mml:mstyle></mml:mrow></mml:mfenced><mml:mo>≤</mml:mo><mml:mn>1</mml:mn></mml:math>\n<inline-graphic xlink:href=\"ctpad2e88ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> with <italic toggle=\"yes\">E</italic> representing the particle’s energy, <italic toggle=\"yes\">E</italic>\n<sub>\n<italic toggle=\"yes\">p</italic>\n</sub> is the Planck’s energy, and <italic toggle=\"yes\">β</italic> is the rainbow parameter. We obtain the approximate analytical solutions for the scalar particles and conduct a thorough analysis of the obtained results. Afterwards, we study the quantum dynamics of quantum oscillator fields within this BML space-time, employing the Klein–Gordon oscillator. Here also, we choose the same sets of rainbow functions and obtain the approximate eigenvalue solution for the oscillator fields. Notably, we demonstrate that the relativistic approximate energy profiles of charge-free scalar particles and oscillator fields get influenced by the topology of the geometry and the cosmological constant. Furthermore, we show that the energy profiles of scalar particles receive modifications from the rainbow parameter and the quantum oscillator fields by both the rainbow parameter and the frequency of oscillation.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of scalar particles through the Klein–Gordon equation under rainbow gravity effects in Bonnor–Melvin-Lambda space-time\",\"authors\":\"Faizuddin Ahmed, Abdelmalek Bouzenada\",\"doi\":\"10.1088/1572-9494/ad2e88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our investigation, we explore the quantum dynamics of charge-free scalar particles through the Klein–Gordon equation within the framework of rainbow gravity, considering the Bonnor–Melvin-Lambda (BML) space-time background. The BML solution is characterized by the magnetic field strength along the axis of the symmetry direction which is related to the cosmological constant Λ and the topological parameter <italic toggle=\\\"yes\\\">α</italic> of the geometry. The behavior of charge-free scalar particles described by the Klein–Gordon equation is investigated, utilizing two sets of rainbow functions: (i) <inline-formula>\\n<tex-math>\\n<?CDATA $f(\\\\chi )=\\\\tfrac{({{\\\\rm{e}}}^{\\\\beta \\\\,\\\\chi }-1)}{\\\\beta \\\\,\\\\chi }$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>f</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>χ</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mo>=</mml:mo><mml:mstyle displaystyle=\\\"false\\\"><mml:mfrac><mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\\\"normal\\\">e</mml:mi></mml:mrow><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow></mml:mfrac></mml:mstyle></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad2e88ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, <italic toggle=\\\"yes\\\">h</italic>(<italic toggle=\\\"yes\\\">χ</italic>) = 1 and (ii) <italic toggle=\\\"yes\\\">f</italic>(<italic toggle=\\\"yes\\\">χ</italic>) = 1, <inline-formula>\\n<tex-math>\\n<?CDATA $h(\\\\chi )=1+\\\\tfrac{\\\\beta \\\\,\\\\chi }{2}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>h</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>χ</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mstyle displaystyle=\\\"false\\\"><mml:mfrac><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mstyle></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad2e88ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. Here <inline-formula>\\n<tex-math>\\n<?CDATA $0\\\\lt \\\\left(\\\\chi =\\\\tfrac{| E| }{{E}_{p}}\\\\right)\\\\leqslant 1$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mn>0</mml:mn><mml:mo>&lt;</mml:mo><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:mi>χ</mml:mi><mml:mo>=</mml:mo><mml:mstyle displaystyle=\\\"false\\\"><mml:mfrac><mml:mrow><mml:mo stretchy=\\\"false\\\">∣</mml:mo><mml:mi>E</mml:mi><mml:mo stretchy=\\\"false\\\">∣</mml:mo></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfrac></mml:mstyle></mml:mrow></mml:mfenced><mml:mo>≤</mml:mo><mml:mn>1</mml:mn></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad2e88ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> with <italic toggle=\\\"yes\\\">E</italic> representing the particle’s energy, <italic toggle=\\\"yes\\\">E</italic>\\n<sub>\\n<italic toggle=\\\"yes\\\">p</italic>\\n</sub> is the Planck’s energy, and <italic toggle=\\\"yes\\\">β</italic> is the rainbow parameter. We obtain the approximate analytical solutions for the scalar particles and conduct a thorough analysis of the obtained results. Afterwards, we study the quantum dynamics of quantum oscillator fields within this BML space-time, employing the Klein–Gordon oscillator. Here also, we choose the same sets of rainbow functions and obtain the approximate eigenvalue solution for the oscillator fields. Notably, we demonstrate that the relativistic approximate energy profiles of charge-free scalar particles and oscillator fields get influenced by the topology of the geometry and the cosmological constant. Furthermore, we show that the energy profiles of scalar particles receive modifications from the rainbow parameter and the quantum oscillator fields by both the rainbow parameter and the frequency of oscillation.\",\"PeriodicalId\":10641,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad2e88\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad2e88","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在我们的研究中,考虑到波诺-梅尔文-兰姆达(BML)时空背景,我们在彩虹引力框架内通过克莱因-戈登方程探索了无电荷标量粒子的量子动力学。BML 解法的特点是沿对称轴方向的磁场强度与宇宙学常数Λ和几何拓扑参数α相关。利用两组彩虹函数研究了克莱因-戈登方程描述的无电荷标量粒子的行为:(i) f(χ)=(eβχ-1)βχ, h(χ) = 1 和 (ii) f(χ) = 1, h(χ)=1+βχ2 。这里,0<χ=∣E∣Ep≤1,E 代表粒子的能量,Ep 是普朗克能量,β 是虹参数。我们得到了标量粒子的近似解析解,并对所得结果进行了深入分析。之后,我们利用克莱因-戈登振荡器研究了 BML 时空中量子振荡器场的量子动力学。在这里,我们也选择了相同的彩虹函数集,并得到了振子场的近似特征值解。值得注意的是,我们证明了无电荷标量粒子和振荡场的相对论近似能量剖面会受到几何拓扑和宇宙学常数的影响。此外,我们还证明了标量粒子的能量剖面会受到彩虹参数的影响,而量子振荡场则会受到彩虹参数和振荡频率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of scalar particles through the Klein–Gordon equation under rainbow gravity effects in Bonnor–Melvin-Lambda space-time
In our investigation, we explore the quantum dynamics of charge-free scalar particles through the Klein–Gordon equation within the framework of rainbow gravity, considering the Bonnor–Melvin-Lambda (BML) space-time background. The BML solution is characterized by the magnetic field strength along the axis of the symmetry direction which is related to the cosmological constant Λ and the topological parameter α of the geometry. The behavior of charge-free scalar particles described by the Klein–Gordon equation is investigated, utilizing two sets of rainbow functions: (i) f(χ)=(eβχ1)βχ , h(χ) = 1 and (ii) f(χ) = 1, h(χ)=1+βχ2 . Here 0<χ=EEp1 with E representing the particle’s energy, E p is the Planck’s energy, and β is the rainbow parameter. We obtain the approximate analytical solutions for the scalar particles and conduct a thorough analysis of the obtained results. Afterwards, we study the quantum dynamics of quantum oscillator fields within this BML space-time, employing the Klein–Gordon oscillator. Here also, we choose the same sets of rainbow functions and obtain the approximate eigenvalue solution for the oscillator fields. Notably, we demonstrate that the relativistic approximate energy profiles of charge-free scalar particles and oscillator fields get influenced by the topology of the geometry and the cosmological constant. Furthermore, we show that the energy profiles of scalar particles receive modifications from the rainbow parameter and the quantum oscillator fields by both the rainbow parameter and the frequency of oscillation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Theoretical Physics
Communications in Theoretical Physics 物理-物理:综合
CiteScore
5.20
自引率
3.20%
发文量
6110
审稿时长
4.2 months
期刊介绍: Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of: mathematical physics quantum physics and quantum information particle physics and quantum field theory nuclear physics gravitation theory, astrophysics and cosmology atomic, molecular, optics (AMO) and plasma physics, chemical physics statistical physics, soft matter and biophysics condensed matter theory others Certain new interdisciplinary subjects are also incorporated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信