{"title":"The quasi-Gramian solution of a non-commutative extension of the higher-order nonlinear Schrödinger equation","authors":"H W A Riaz, J Lin","doi":"10.1088/1572-9494/ad244f","DOIUrl":null,"url":null,"abstract":"The nonlinear Schrödinger (NLS) equation, which incorporates higher-order dispersive terms, is widely employed in the theoretical analysis of various physical phenomena. In this study, we explore the non-commutative extension of the higher-order NLS equation. We treat real or complex-valued functions, such as <italic toggle=\"yes\">g</italic>\n<sub>1</sub> = <italic toggle=\"yes\">g</italic>\n<sub>1</sub>(<italic toggle=\"yes\">x</italic>, <italic toggle=\"yes\">t</italic>) and <italic toggle=\"yes\">g</italic>\n<sub>2</sub> = <italic toggle=\"yes\">g</italic>\n<sub>2</sub>(<italic toggle=\"yes\">x</italic>, <italic toggle=\"yes\">t</italic>) as non-commutative, and employ the Lax pair associated with the evolution equation, as in the commutation case. We derive the quasi-Gramian solution of the system by employing a binary Darboux transformation. The soliton solutions are presented explicitly within the framework of quasideterminants. To visually understand the dynamics and solutions in the given example, we also provide simulations illustrating the associated profiles. Moreover, the solution can be used to study the stability of plane waves and to understand the generation of periodic patterns within the context of modulational instability.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad244f","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The nonlinear Schrödinger (NLS) equation, which incorporates higher-order dispersive terms, is widely employed in the theoretical analysis of various physical phenomena. In this study, we explore the non-commutative extension of the higher-order NLS equation. We treat real or complex-valued functions, such as g1 = g1(x, t) and g2 = g2(x, t) as non-commutative, and employ the Lax pair associated with the evolution equation, as in the commutation case. We derive the quasi-Gramian solution of the system by employing a binary Darboux transformation. The soliton solutions are presented explicitly within the framework of quasideterminants. To visually understand the dynamics and solutions in the given example, we also provide simulations illustrating the associated profiles. Moreover, the solution can be used to study the stability of plane waves and to understand the generation of periodic patterns within the context of modulational instability.
期刊介绍:
Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of:
mathematical physics
quantum physics and quantum information
particle physics and quantum field theory
nuclear physics
gravitation theory, astrophysics and cosmology
atomic, molecular, optics (AMO) and plasma physics, chemical physics
statistical physics, soft matter and biophysics
condensed matter theory
others
Certain new interdisciplinary subjects are also incorporated.