Yitao Hui, Xianhe Meng, Aobo Yue, Qi Shen, Bingyu Liu, Nengjun Yu, Qiaoling Kang, Lijing Yan, Chubin Wan and Tingli Ma
{"title":"Hard–soft carbon decorated Na3V2(PO4)3 cathode for high-rate and stable sodium-ion batteries","authors":"Yitao Hui, Xianhe Meng, Aobo Yue, Qi Shen, Bingyu Liu, Nengjun Yu, Qiaoling Kang, Lijing Yan, Chubin Wan and Tingli Ma","doi":"10.1039/D5SE00897B","DOIUrl":"https://doi.org/10.1039/D5SE00897B","url":null,"abstract":"<p >Na superionic conductors (NASICONs) have attracted much attention due to their unique framework structure and high capacity. However, the poor intrinsic electron conductivity severely limits further development. This work develops a soft–hard carbon composite modified Na<small><sub>3</sub></small>V<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> (NVP) cathode with excellent rate performance and long-term cycling stability. The optimized sample exhibits excellent electrochemical performance and can deliver a specific discharge capacity of 102.7 mAh g<small><sup>−1</sup></small> at 1 C rate. At the same time, after 5000 cycles at 20 C rate, the discharge capacity can reach 82.3 mAh g<small><sup>−1</sup></small>, and the capacity retention rate is 100.1%. The morphological characteristics of the NVP/C samples were investigated. Meanwhile, combined with Raman spectroscopy and electrochemical analysis, these results revealed that the synergistic interaction between soft and hard carbon components significantly enhances electronic conductivity and facilitates rapid ionic transport. This work provides a unique idea for the surface modification and synthesis of NASICON cathode materials for sodium-ion batteries.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 21","pages":" 5915-5920"},"PeriodicalIF":4.1,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145335381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natasha Ross, Kayode Adesina Adegoke and Mieke Adriaens
{"title":"Bifunctional photoactive nanomaterials for sustainable paper-based photobatteries: powering point-of-care medical biosensors","authors":"Natasha Ross, Kayode Adesina Adegoke and Mieke Adriaens","doi":"10.1039/D5SE00945F","DOIUrl":"https://doi.org/10.1039/D5SE00945F","url":null,"abstract":"<p >Most of the point-of-care (POC) POC diagnostics systems require a fluid manipulation that can be controlled by microfluidic components, such as micropumps, microvalves, and micro-separators, among others. These microfluidic components require significant external energy to apply external forces. Hence, the lack of reliable and sustainable power sources impedes the widespread adoption of these devices. Since the 1970s, photobatteries have been the subject of scientific inquiry with a resurgence in recent years, catalysing the creation of diverse photobattery designs. Among these, paper-based systems have emerged as a particularly promising avenue, offering a potential solution to mitigate the environmental footprint of disposable energy storage devices. Their performance and longevity, however, are heavily dependent on the photoactive battery electrode materials and architectures employed. This comprehensive review article examines the cutting-edge research on bifunctional nanomaterials optimally suited for paper-based lithium-ion photobatteries. The focus is primarily on two-electrode configurations where a single electrode integrates both light harvesting and energy storage capabilities. Such a design is particularly advantageous for electrochemical point-of-care (POC) medical sensors, offering a compact and efficient energy solution. The work highlights the unique requirements and challenges associated with these systems and provides a comprehensive overview of potential photoactive materials. It critically evaluates their performance metrics, such as specific energy, power density, safety, and environmental impact, in the context of solar-powered POC medical sensor applications. Successful case studies and real-world applications are discussed, showcasing their potential to improve healthcare accessibility and quality, particularly in underserved and resource-constrained communities. This review underscores the transformative potential of nanostructure photobatteries and beckons researchers to partake in shaping this new field.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 20","pages":" 5490-5533"},"PeriodicalIF":4.1,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145230157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rachael J. Barla, Suresh Gupta and Smita Raghuvanshi
{"title":"Sustainable CO2 bio-mitigation: a life cycle perspective on chemolithotrophic conversion in bubble column bioreactors","authors":"Rachael J. Barla, Suresh Gupta and Smita Raghuvanshi","doi":"10.1039/D5SE00936G","DOIUrl":"https://doi.org/10.1039/D5SE00936G","url":null,"abstract":"<p >The urgent need for low-carbon energy alternatives has intensified interest in sustainable biofuel production pathways. This study presents a comprehensive Life Cycle Assessment (LCA) of a chemolithotrophic bacterial platform for simultaneous CO<small><sub>2</sub></small> mitigation and biodiesel production using <em>Bacillus cereus</em> SSLMC2 cultivated in 10 and 20 L bubble column bioreactors. Unlike phototrophic systems, this process leverages light-independent bacterial metabolism, offering year-round operation, high biomass yield, and compatibility with flue gas as a carbon source. Experimental data were integrated with LCA modeling using Umberto NXT Universal software and the ReCiPe 2016 and CML baseline methods to quantify environmental impacts across cultivation, biomass harvesting, lipid extraction, and transesterification stages. The results identify dewatering and homogenization as major environmental hotspots, contributing significantly to climate change, fossil depletion, and human toxicity categories. Endpoint analysis revealed human health and resource availability as the most impacted areas, primarily due to electricity use and chemical inputs. Cumulative energy demand assessments confirmed that scale-up from 10 to 20 L does not proportionally increase energy use, suggesting promising scalability. Recommendations include replacing centrifugation with membrane-based dewatering, solvent recovery systems, integration of renewable energy, and recycling of CO<small><sub>2</sub></small> and water. This is the first LCA study to evaluate chemolithotrophic CO<small><sub>2</sub></small> bio-mitigation coupled with biodiesel production at pilot scale using empirical data. The findings provide critical insights for optimizing microbial biorefineries and support the development of scalable, environmentally efficient carbon capture and utilization technologies.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 20","pages":" 5578-5588"},"PeriodicalIF":4.1,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145230131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chitosan-derived carbon supported ruthenium catalyst for efficient hydrogenation of levulinic acid to γ-valerolactone","authors":"Lavanya Korampattu and Paresh L. Dhepe","doi":"10.1039/D5SE00988J","DOIUrl":"https://doi.org/10.1039/D5SE00988J","url":null,"abstract":"<p >The transition from fossil fuels to sustainable energy and chemical production relies heavily on efficient biomass valorization. Levulinic acid (LA), a key platform chemical from lignocellulosic biomass, serves as a versatile precursor for valuable chemicals like γ-valerolactone (GVL), a promising green solvent, fuel additive, and polymer precursor. While ruthenium-based catalysts are effective for LA hydrogenation, conventional systems like Ru/C often suffer from metal leaching and deactivation due to weak metal–support interactions. Current approaches to improve stability, such as using nitrogen-doped carbon supports, involve complex synthesis and synthetic nitrogen precursors. Addressing these limitations, we present a facile and sustainable strategy for synthesizing a robust ruthenium catalyst by directly pyrolyzing marine biomass-derived chitosan to form a self-nitrogen-doped carbon support. This catalyst exhibited superior stability and excellent recyclability in the aqueous-phase hydrogenation of LA to GVL, surpassing conventional Ru/C while maintaining activity comparable to that of leading Ru catalysts supported on N-doped carbon. Unlike other N-doped carbon supports, our method avoids synthetic N-dopants and tedious procedures, making it inherently more sustainable. Detailed characterization <em>via</em> XPS and H<small><sub>2</sub></small>-TPR revealed strong metal–support interactions, facilitated by intrinsic nitrogen functionalities, effectively stabilizing the ruthenium species. This study also identifies the critical role of graphitic and pyridinic nitrogen species in controlling catalytic activity and elucidates the importance of optimizing nitrogen species and content in tailoring chitosan-derived supports. The proposed mechanism describes how Ru–N centers activate hydrogen and LA, with basic nitrogen sites aiding the dehydration step to GVL. Overall, this work features the potential of chitosan derived carbon as a sustainable and tunable support for efficient biomass hydrogenation catalysts and offers fundamental insights into the role of nitrogen doping in tailoring catalytic performance.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 21","pages":" 5921-5930"},"PeriodicalIF":4.1,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145335382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nils Böttcher, Luise Sander, Alexander Ulbricht, Martinus Putra Widjaja, Tim-Patrick Fellinger, Anita Schmidt and Jonas Krug von Nidda
{"title":"Sodium-ion battery research @ BAM (I): investigating the thermal runaway behaviour of commercial sodium-ion battery cells","authors":"Nils Böttcher, Luise Sander, Alexander Ulbricht, Martinus Putra Widjaja, Tim-Patrick Fellinger, Anita Schmidt and Jonas Krug von Nidda","doi":"10.1039/D5SE00687B","DOIUrl":"https://doi.org/10.1039/D5SE00687B","url":null,"abstract":"<p >Commercially available sodium-ion battery (SIB) cells, with energy densities comparable to lithium-ion battery (LIB) cells based on LiFePO<small><sub>4</sub></small>, were investigated regarding their safety behaviour under thermal abuse conditions. Tests were carried out in an inert atmosphere. The SIB-cells went into thermal runaway (TR), intriguingly, even at a rather low state of charge of 30%. The TR-event was coupled with a pronounced jelly roll ejection, challenging the interpretation of the TR-diagrams. These findings highlight the necessity of incorporating SIB-cells into the ongoing safety classification discussions for LIB-cells.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 21","pages":" 5832-5838"},"PeriodicalIF":4.1,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d5se00687b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145335378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Azat F. Akbulatov, Polina G. Novkina, Anastasia A. Bizyaeva, Natalya G. Nikitenko, Victoria V. Ozerova, Nikita A. Slesarenko, Ekaterina A. Khakina, Ekaterina A. Komissarova, Nikita A. Emelianov, Alexander S. Peregudov, Alexander F. Shestakov, Olga A. Kraevaya, Sergey A. Kuklin and Pavel A. Troshin
{"title":"Perylenediimide-based bridged dimers as electron-transport layers in perovskite solar cells with p–i–n configuration","authors":"Azat F. Akbulatov, Polina G. Novkina, Anastasia A. Bizyaeva, Natalya G. Nikitenko, Victoria V. Ozerova, Nikita A. Slesarenko, Ekaterina A. Khakina, Ekaterina A. Komissarova, Nikita A. Emelianov, Alexander S. Peregudov, Alexander F. Shestakov, Olga A. Kraevaya, Sergey A. Kuklin and Pavel A. Troshin","doi":"10.1039/D5SE00716J","DOIUrl":"https://doi.org/10.1039/D5SE00716J","url":null,"abstract":"<p >Fullerene derivative PCBM is a widely used electron transport layer (ETL) in p–i–n structured perovskite solar cells (PSCs). However, the high cost of PCBM, often exceeding that of all other active materials combined (excluding ITO), represents a significant barrier to the large-scale commercialization of PSCs, necessitating the search for more cost-effective alternatives. Herein, nine novel perylenediimide (PDI) dimers are synthesized and employed as ETLs to overcome these challenges. Electrochemical, optoelectronic, and morphological properties of the synthesized compounds were systematically compared with respect to the reference PDI derivative with a thiophene core building block. Correlations were identified between the ability of the developed materials to form high-quality, uniform films and the stabilization of the underlying perovskite layer. A further significant correlation was also observed between the LUMO level of the PDI derivative and the performance of the perovskite devices. These findings offer valuable insights into the targeted design of dimeric perylenediimide derivatives for creating stable and efficient perovskite solar cells.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 21","pages":" 5894-5903"},"PeriodicalIF":4.1,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145335376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manasa R. Shankar, A. N. Prabhu and Ramakrishna Nayak
{"title":"A co-doping strategy for p- to n-type transition and performance boost in SnSe-based flexible thermoelectric generators","authors":"Manasa R. Shankar, A. N. Prabhu and Ramakrishna Nayak","doi":"10.1039/D5SE00175G","DOIUrl":"https://doi.org/10.1039/D5SE00175G","url":null,"abstract":"<p >Flexible thermoelectric generators (FTEGs) have garnered considerable interest for their potential in energy harvesting applications. This study investigates the synthesis of SnSe and Bi/Te co-doped SnSe polycrystals using the solid-state reaction method, followed by the fabrication of FTEGs using a low-cost, scalable screen-printing technique. Hall effect measurements confirm successful doping, resulting in a transition from p-type to n-type conduction in SnSe. The Seebeck coefficient of the 2% Bi-doped SnSe/SnSe (p–n type) FTEG reaches −1146 μV K<small><sup>−1</sup></small>, enhancing the thermoelectric performance. A maximum power output of 6.8 nW was obtained for a p–n-type FTEG consisting of SnSe and Sn<small><sub>0.98</sub></small>Bi<small><sub>0.02</sub></small>Se<small><sub>0.97</sub></small>Te<small><sub>0.03</sub></small> at a temperature difference of 120 °C. Thermal conductivity measurements indicate that doping reduces phonon transport due to increased microstrain and dislocation density, which enhance phonon scattering. Furthermore, the FTEGs exhibited excellent mechanical stability, with less than 0.5% change in electrical resistance at bending angles up to 120° and after 500 cycles. These results suggest that Bi/Te co-doped SnSe is a potential candidate for scalable, flexible thermoelectric applications.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 20","pages":" 5635-5647"},"PeriodicalIF":4.1,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d5se00175g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145230137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling charge dynamics in high-performance binder-free photo-rechargeable supercapacitors","authors":"Aadil Rashid Lone, Sahil Jangra, Maryam Samanian, Aditya Sadhanala and Kavita Pandey","doi":"10.1039/D5SE00700C","DOIUrl":"https://doi.org/10.1039/D5SE00700C","url":null,"abstract":"<p >In this study, binder-free nickel cobalt oxide (NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small>) nanowire arrays with a cubic spinel structure were directly grown on nickel foam (NF) <em>via</em> an <em>in situ</em> hydrothermal process. The resulting one-dimensional nanowires exhibited a uniform morphology and a favourable bandgap of approximately 1.67 eV, making them ideal candidates as electrode materials for photo-assisted supercapacitors. Electronic structure analysis revealed the coexistence of Ni<small><sup>2+</sup></small>/Ni<small><sup>3+</sup></small> and Co<small><sup>2+</sup></small>/Co<small><sup>3+</sup></small> redox pairs, significantly enhancing electrochemical kinetics and facilitating efficient photo-assisted charge storage. Under illumination, the NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small>@NF nanowires demonstrated a remarkable 54% increase in areal capacitance, from 570 to 880 mF cm<small><sup>−2</sup></small> at 15 mA cm<small><sup>−2</sup></small>, attributed to the efficient separation and storage of photo-generated charges driven by surface polarization effects. An asymmetric supercapacitor device was fabricated with activated carbon (AC) as the anode and NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small>@NF nanowires as the photoactive cathode, maintaining 88% capacitance retention after 1000 illumination cycles. Density functional theory with the on-site Hubbard <em>U</em> correction (DFT + <em>U</em>) calculations further confirmed that nickel substitution in the Co<small><sub>3</sub></small>O<small><sub>4</sub></small> matrix significantly reduces the bandgap and enhances the magnetic moment, supported by asymmetric spin-resolved density of states and band structure analyses. This research provides valuable insights for developing next-generation photo-assisted energy storage solutions.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 21","pages":" 5856-5868"},"PeriodicalIF":4.1,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145335380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannes Liepold, Hendrik Sannemüller, Philipp A. Heizmann, Julian Stiegeler, Tym de Wild, Carolin Klose, Robert Alink, Severin Vierrath, Steven Holdcroft and Andreas Münchinger
{"title":"Back to black: utilizing unsupported Pt for thin cathodes in PFSA-free PEM fuel cells","authors":"Hannes Liepold, Hendrik Sannemüller, Philipp A. Heizmann, Julian Stiegeler, Tym de Wild, Carolin Klose, Robert Alink, Severin Vierrath, Steven Holdcroft and Andreas Münchinger","doi":"10.1039/D5SE00809C","DOIUrl":"https://doi.org/10.1039/D5SE00809C","url":null,"abstract":"<p >In hydrocarbon-based proton exchange membrane fuel cells, cathode catalyst layers (CLs) made from fluorine-free, sulfonated polyphenylenes (<em>e.g.</em>, Pemion®) face challenges in balancing sufficient gas transport with low protonic resistance – a tradeoff that is especially pronounced at application-relevant low humidity operation. Here, we address this issue by utilizing unsupported Pt, <em>i.e.</em>, platinum black (PtB), as the electrocatalyst to reach very thin CLs (<2.5 μm). When compared to CLs with carbon-supported platinum (Pt/C), evaluation at the same roughness factor (rf) reveals a performance increase from 180 to 420 mA cm<small><sup>−2</sup></small> at 0.75 V, 50% RH and 95 °C, which is the highest reported performance for a fuel cell with hydrocarbon membrane and CLs and on par with perfluorosulfonic acid reference cells. Accelerated Pt dissolution tests reveal a fast initial rf loss within the first 100 potential cycles for PtB compared to Pt/C (15% <em>vs.</em> 4%), but virtual identical after 30 000 cycles.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 20","pages":" 5619-5626"},"PeriodicalIF":4.1,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d5se00809c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145230135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Aziz Ur Rehman, Christian H. Schwarz, Sina Souzani, Christian Heßke and Marco Haumann
{"title":"Methanol-to-electricity via low-temperature steam reforming integrated with a high-temperature PEM fuel cell","authors":"Muhammad Aziz Ur Rehman, Christian H. Schwarz, Sina Souzani, Christian Heßke and Marco Haumann","doi":"10.1039/D5SE00703H","DOIUrl":"https://doi.org/10.1039/D5SE00703H","url":null,"abstract":"<p >Liquid organic hydrogen carriers (LOHCs) are a promising method for renewable, green hydrogen transportation from the point of generation using renewable energy to the point of demand. Methanol is one such LOHC with advantages such as high hydrogen content, easy transportation and a simple reaction to release the hydrogen. Herein, we reported the use of a novel supported liquid phase (SLP) catalyst in a miniplant to carry out low-temperature methanol steam reforming (MSR) to release hydrogen and subsequently produce electricity using a high-temperature proton exchange membrane fuel cell (HT-PEMFC). This reformed methanol fuel cell (RMFC) setup successfully ran over the course of 45 h experiencing little catalyst deactivation, producing up to 49.2 <em>l</em><small><sub>N</sub></small> h<small><sup>−1</sup></small> of hydrogen and up to 39 W electrical power using HT-PEMFC. Comparing between the reformate gas produced using SLP catalyst and pure hydrogen as feed for the fuel cell, the HT-PEMFC showed almost no difference in the voltage–current characteristic curve in the technically relevant operating points between 500 and 700 mV cell voltage. Furthermore, a pinch analysis indicated that the combination of a low-temperature MSR and HT-PEMFC presents an opportunity for heat-integration which could lead to increased efficiency.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 20","pages":" 5627-5634"},"PeriodicalIF":4.1,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d5se00703h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145230136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}