Gradient-coated P-doped Si3N4 with dual functions for silicon anodes: stress buffering and charge transport enhancement†

IF 4.1 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yi Zhong, Bichen Yu, Lanqing Xu, Yajing Huang, Yongping Zheng, Jiaxing Li and Zhigao Huang
{"title":"Gradient-coated P-doped Si3N4 with dual functions for silicon anodes: stress buffering and charge transport enhancement†","authors":"Yi Zhong, Bichen Yu, Lanqing Xu, Yajing Huang, Yongping Zheng, Jiaxing Li and Zhigao Huang","doi":"10.1039/D5SE00347D","DOIUrl":null,"url":null,"abstract":"<p >To address the challenges of silicon anodes, including large volume changes and low ion mobility in Li-ion batteries, we propose a novel strategy: directly forming P-Si<small><sub>3</sub></small>N<small><sub>4</sub></small> protective layers on Si particles. This coating mitigates structural degradation during cycling while enhancing electrical conductivity. Additionally, integrating pitch creates a conductive network, leveraging the high carrier concentration of P-Si<small><sub>3</sub></small>N<small><sub>4</sub></small> for efficient electron transfer at high current densities. The N,P-Si@PC composite exhibits exceptional stability and capacity retention. Even after 800 cycles at current densities of 1 A g<small><sup>−1</sup></small> and 3 A g<small><sup>−1</sup></small>, it maintains high capacities of 695 mAh g<small><sup>−1</sup></small> and 427 mAh g<small><sup>−1</sup></small>, respectively. To elucidate the underlying mechanisms, we performed elasticity tensor analysis and Density Functional Theory (DFT) calculations. These studies reveal that P-Si<small><sub>3</sub></small>N<small><sub>4</sub></small> enhances mechanical resilience, effectively reducing stress-induced fractures and limiting Solid Electrolyte Interphase (SEI) growth. Furthermore, DFT results indicate that phosphorus doping narrows the band gap, increasing carrier concentration and improving the conductivity of the protective layer. These alternative versions offer varied perspectives on addressing challenges with silicon-based Li-ion battery anodes through innovative coating strategies and theoretical insights into their mechanisms of action.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 15","pages":" 4125-4132"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00347d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To address the challenges of silicon anodes, including large volume changes and low ion mobility in Li-ion batteries, we propose a novel strategy: directly forming P-Si3N4 protective layers on Si particles. This coating mitigates structural degradation during cycling while enhancing electrical conductivity. Additionally, integrating pitch creates a conductive network, leveraging the high carrier concentration of P-Si3N4 for efficient electron transfer at high current densities. The N,P-Si@PC composite exhibits exceptional stability and capacity retention. Even after 800 cycles at current densities of 1 A g−1 and 3 A g−1, it maintains high capacities of 695 mAh g−1 and 427 mAh g−1, respectively. To elucidate the underlying mechanisms, we performed elasticity tensor analysis and Density Functional Theory (DFT) calculations. These studies reveal that P-Si3N4 enhances mechanical resilience, effectively reducing stress-induced fractures and limiting Solid Electrolyte Interphase (SEI) growth. Furthermore, DFT results indicate that phosphorus doping narrows the band gap, increasing carrier concentration and improving the conductivity of the protective layer. These alternative versions offer varied perspectives on addressing challenges with silicon-based Li-ion battery anodes through innovative coating strategies and theoretical insights into their mechanisms of action.

Abstract Image

具有双重功能的梯度包覆p掺杂氮化硅阳极:应力缓冲和电荷输运增强
为了解决锂离子电池中硅阳极的挑战,包括大体积变化和低离子迁移率,我们提出了一种新的策略:直接在硅颗粒上形成P-Si3N4保护层。这种涂层减轻了循环过程中的结构退化,同时提高了导电性。此外,集成沥青创建了一个导电网络,利用P-Si3N4的高载流子浓度在高电流密度下进行有效的电子转移。N,P-Si@PC复合材料表现出优异的稳定性和容量保持性。即使在电流密度为1 A g−1和3 A g−1的情况下,经过800次循环后,它也能分别保持695 mAh g−1和427 mAh g−1的高容量。为了阐明潜在的机制,我们进行了弹性张量分析和密度泛函理论(DFT)计算。这些研究表明,P-Si3N4增强了机械弹性,有效地减少了应力诱导的断裂,并限制了固体电解质界面相(SEI)的生长。此外,DFT结果表明,磷的掺杂缩小了带隙,增加了载流子浓度,提高了保护层的导电性。这些替代版本通过创新的涂层策略和对其作用机制的理论见解,为解决硅基锂离子电池阳极的挑战提供了不同的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信