{"title":"Adhesion mechanisms and design strategies for bioadhesives","authors":"","doi":"10.1016/j.colcom.2024.100809","DOIUrl":"10.1016/j.colcom.2024.100809","url":null,"abstract":"<div><div>Bioadhesives are widely used in medical fields due to their compatibility with biological soft tissues and their ability to facilitate non-invasive wound closure. Despite their widespread clinical applications, the inadequate adhesion performance highlights the need for further refinement and innovation of these materials. A profound comprehension of the underlying mechanisms of tissue adhesion is essential for the successful development of bioadhesives. This review elucidates adhesion mechanisms and design principles for bioadhesives, emphasizing strategies to enhance interfacial adhesion and cohesion performance. We also provide a forward-looking perspective on the challenges and emerging trends for the development of next-generation bioadhesives. The progress of bioadhesives has significant potential to revolutionize wound management.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Icariin-loaded multilayered films deposited onto micro/nanostructured titanium enhances osteogenesis and reduces inflammation under diabetic conditions","authors":"","doi":"10.1016/j.colcom.2024.100808","DOIUrl":"10.1016/j.colcom.2024.100808","url":null,"abstract":"<div><div>Disordered bone metabolism and the associated inflammatory microenvironment in diabetic patients make treating bone fractures difficult in this patient population. However, the inherent bioinert properties of titanium implants result in insufficient osseointegration, making it important to develop an efficient surface modification strategy to provide titanium implants with enhanced osseointegration capabilities in diabetic conditions. Here, a micro/nanostructure was constructed on titanium through acid etching and anodic oxidation, followed by an addition of a multilayered film of chitosan (CHI), gelatin (GEL) and icariin (ICA) onto the surface of micro/nanostructured titanium using a layer-by-layer self-assembly technology. The characterization results indicated that the icariin-loaded multilayered film was successfully deposited onto titanium surface and achieved a long-term sustainable release of ICA. Cell experiments showed that the icariin-loaded multilayered films modified titanium promoted osteogenesis, inhibited osteoclast generation, and reduced inflammatory reaction under diabetic conditions. This study provides an avenue for treating fractures in patients with diabetes.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From dairy waste to value-added bio-based surfactants","authors":"","doi":"10.1016/j.colcom.2024.100807","DOIUrl":"10.1016/j.colcom.2024.100807","url":null,"abstract":"<div><div>Cheese whey permeate, the main waste stream of dairy industry, was used as a starting material for the production of bio-based surfactants (SFAEs). Specifically, the first step in the sustainable chemoenzymatic synthesis of <em>n</em>-butyl 6-<em>O</em>-palmitoyl-<span>D</span>-glycosides (Fischer glycosylation followed by enzymatic esterification) was optimized by a chemometric study. The surfactancy of the prepared isomeric mixtures was deeply investigated in terms of static and dynamic interfacial tension and emulsifying capability over time.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000426/pdfft?md5=eec654311e93bf0c2e385beccb257318&pid=1-s2.0-S2215038224000426-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Colloidal photonic crystals with tunable reflection wavelengths or intensities derived from their reconfigurable structures","authors":"","doi":"10.1016/j.colcom.2024.100806","DOIUrl":"10.1016/j.colcom.2024.100806","url":null,"abstract":"<div><p>Colloidal photonic crystals (CPCs), which are the ordered assemblies of colloidal particles, can reflect specific wavelengths of light. In particular, CPCs with controllable optical properties are promising materials for advanced photonic applications. Principally, the optical properties of CPCs, i.e., reflection wavelengths and reflection intensities, are controllable. These two characteristics are closely related to the assembled structures of CPCs, especially interplanar spacing and regularity of the assembled structures. The reflection wavelength is proportional to the interplanar spacing of the structure; thus, uniform expanding/contracting of particle-to-particle distance causes red/blue shift of reflection peaks. On the other hand, the regularity affects the reflection intensity; reversible order–disorder transitions enable tuning of the reflection peak intensities. To control the structures of CPCs, various stimuli-responsive polymers and electromagnetic interactions of colloids have been employed. This review explains the above methods and clarifies the future perspectives.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000414/pdfft?md5=1a401ae7e9b68616a27dcb098314523e&pid=1-s2.0-S2215038224000414-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gold nanoparticles antibacterial activity: Does the surface matter?","authors":"","doi":"10.1016/j.colcom.2024.100804","DOIUrl":"10.1016/j.colcom.2024.100804","url":null,"abstract":"<div><p>The misuse and overuse of antibiotics have ushered in the rapid rise of antimicrobial resistance (AMR). Gold nanoparticles (AuNPs) are considered a potential solution for AMR due to their dual role as antibacterial agents and antibiotic-delivery vehicles. AuNPs with varied surface area, charge, and morphology have been utilized alone and with antibiotics tailored on their surface to overcome resistant bacteria. However, transitioning AuNPs from lab to bedside faces challenges due to the inconsistent antibacterial outcomes and the need for a consensus on the optimal AuNP features that harness their potential as antibacterial agents. This review navigates through the interplay of AuNPs' surface and their antibacterial behavior, considering their surface charge, surface potential, surface coating, surface area, morphology, and antibiotic functionalization. Our review serves as a guide for AuNPs surface features that elicit the most favorable antibacterial outcomes, which will aid in formulating a novel antibacterial agent capable of counteracting AMR.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000396/pdfft?md5=d9e712ecde12e50bba21f06c886a9b7a&pid=1-s2.0-S2215038224000396-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unraveling the stress-induced toxicity of black phosphorus nanosheets and the underlying mechanism","authors":"","doi":"10.1016/j.colcom.2024.100802","DOIUrl":"10.1016/j.colcom.2024.100802","url":null,"abstract":"<div><p>The unique physicochemical properties of black phosphorus (BP) nanomaterials make them extremely versatile, and growing concern has emerged regarding their biocompatibility. Here, we investigate the toxic profile of BP nanosheets under oxidative stress conditions in living cells and a simple animal model, <em>Caenorhabditis elegans</em>. Under normal conditions, BP nanosheets exhibit no adverse effects on cells and worms. However, the ability of cells and worms to resist oxidative stress is significantly impaired by BP nanosheets. Mechanism studies show that hydroxyl radical overproduction is induced by the reaction between BP nanosheets and H<sub>2</sub>O<sub>2</sub>, which may disrupt mitochondrial integrity and promote the leakage of cytochrome <em>c</em> from mitochondria into cytoplasm. Meanwhile, BP nanosheets are degraded under oxidative stress conditions, providing opportunities for BP nanosheets to interact with cytochrome <em>c</em>, thereby disrupting the cellular antioxidant defense system and ultimately producing toxicity. Our research uncovers the potential mechanism of BP nanosheets with oxidative stress-induced toxicity.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000372/pdfft?md5=82f969790541e80b697370db402b6b9e&pid=1-s2.0-S2215038224000372-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum to “Influence of the chemically reduced graphene oxide interface on the antioxidant multienzyme properties of Prussian blue nanoparticles” [Colloid and Interface Science Communications 52 (2023) 100689]","authors":"","doi":"10.1016/j.colcom.2024.100805","DOIUrl":"10.1016/j.colcom.2024.100805","url":null,"abstract":"","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000402/pdfft?md5=f4933453da549678c39e0c798640ac23&pid=1-s2.0-S2215038224000402-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced anticancer activity of N,N-bis(5-ethyl-2-hydroxybenzyl)methylamine (EMD) hydrophobic drug encapsulated in β-cyclodextrin nanosponges","authors":"","doi":"10.1016/j.colcom.2024.100803","DOIUrl":"10.1016/j.colcom.2024.100803","url":null,"abstract":"<div><p><em>N, N-</em>bis (5-ethyl-2-hydroxybenzyl) methylamine (EMD) is a synthetic benzoxazine dimer compound. EMD targets and degrades the pro-oncogenic transcription factor c-Myc, initiating apoptosis in cancer cells. However, its use is restricted because of poor aqueous solubility and in physiological media. Cyclodextrin nanosponges (CN), a type of supramolecular macrocyclic polymer nanoparticles with hydrophobic cavities but soluble in water, are utilized here to load EMD in order to enhance its solubility. CNs with three different molar ratios of β-cyclodextrin (βCD)-to-citric acid crosslinker are synthesized: CN1 (βCD/citric acid 1:3), CN2 (βCD/citric acid 1:5), and CN3 (βCD/citric acid 1:8), and then loaded with EMD. EMD-CN2 exhibits a significantly higher solubilization efficiency (579.1 μg/mL) compared to the free EMD (59.09 μg/mL). The increased aqueous solubility of CN encapsulated EMD enhanced its anti-cancer efficacy. In vitro cytotoxicity, colony formation inhibition, and c-Myc suppression of EMD in cancer cells (A549 and HCT116) <em>are</em> improved over free EMD administration.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000384/pdfft?md5=e86ae260a8588682692db3551f969899&pid=1-s2.0-S2215038224000384-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication of micro-porous polymeric coating with dynamic drug-eluting property on plastic biliary stent for antiproliferative treatment","authors":"","doi":"10.1016/j.colcom.2024.100801","DOIUrl":"10.1016/j.colcom.2024.100801","url":null,"abstract":"<div><p>The current study aims to construct additional drug-eluting carrier for commercially available biliary stent, providing a practical strategy for the cost-efficient treatment of benign biliary stricture. Specifically, the commercially available biliary stent was endowed with porous polylactic acid coating <em>via in-situ</em> pore-formation induced by solvent treatment. The drug-eluting stent with fibroblast inhibition effect was successfully established by efficiently loading the antiproliferative drug of triamcinolone acetonide into the porous coating. The drug release behavior could be dynamically controlled by adjusting the pore morphology of the porous coating. The <em>in-vitro</em> coating degradation and the fibroblast inhibition effect of the drug-eluting stents were further evaluated to prove the effectiveness of the fabricated porous coating as an antiproliferative drug carrier.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000360/pdfft?md5=86a5a25e7dac12c0d628a8181babf102&pid=1-s2.0-S2215038224000360-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular dynamics characterization of the interfacial structure and forces of the methane-ethane sII gas hydrate interface","authors":"","doi":"10.1016/j.colcom.2024.100800","DOIUrl":"10.1016/j.colcom.2024.100800","url":null,"abstract":"<div><p>The nucleation of gas hydrates is of great interest in flow assurance, global energy demand, and carbon capture and storage. A complex molecular understanding is critical to control hydrate nucleation and growth in potential applications. Molecular dynamics is employed combined with the mechanical definition of surface tension to assess the surface stresses controlling interfacial behavior. We characterize the interfacial tension for sII methane/ethane hydrate and gas mixtures for different temperatures and pressures. We find that the surface tension trends positively with temperature in a balance of water-solid and water-gas interactions. The molecular dipole shows the complexities of water molecule behavior in small, compressed pre-melting layer that emerges as a quasi-liquid. These behaviors contribute to the developing knowledge base surrounding practical applications of this interface.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000359/pdfft?md5=dbdd03c47502284992443a43601c0102&pid=1-s2.0-S2215038224000359-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}