Xinpeng Liu , Dini Lin , Shan Peng , Ronghua Yu , Bailong Tao , Lin Du , Hong Zheng , Xinkun Shen , Yonglin Yu
{"title":"Influence of titanium dioxide nanotubes on macrophage polarization and endothelial cell vascularisation under oxidative stress microenvironment","authors":"Xinpeng Liu , Dini Lin , Shan Peng , Ronghua Yu , Bailong Tao , Lin Du , Hong Zheng , Xinkun Shen , Yonglin Yu","doi":"10.1016/j.colcom.2025.100840","DOIUrl":"10.1016/j.colcom.2025.100840","url":null,"abstract":"<div><div>Elderly fracture healing is significantly impaired by oxidative stress-induced vascular dysfunction. This study investigates the effects of 110 nm titanium dioxide nanotubes (TNT<sub>110</sub>) on macrophage polarization and endothelial cell vascularization under oxidative stress. Under H<sub>2</sub>O<sub>2</sub>-induced oxidative stress, RAW264.7 macrophages cultured on TNT<sub>110</sub> exhibit enhanced M1 polarization, with significantly upregulated M1 marker expression versus the Ti group. Conditioned medium from TNT<sub>110</sub>-stimulated macrophages markedly promoted HUVEC migration and tube formation by activating the ERK/Akt signaling pathway. In vivo, TNT<sub>110</sub> implants demonstrate superior neovascularization (CD31<sup>+</sup> areas) and bone regeneration compared to pure titanium. These findings suggest that TNT<sub>110</sub> enhances vascular and bone tissue regeneration under oxidative stress by modulating macrophage polarization and endothelial cell signaling pathways.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"67 ","pages":"Article 100840"},"PeriodicalIF":4.7,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143899817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Wang , Haofeng Sun , Zhijing Han , Mengjia Dou , Haitao Hu , He Cheng , Chunyong He , Zhenhua Xie , Hanqiu Jiang , Naisheng Jiang , Xin Tong , Yubin Ke , Hua Yang
{"title":"In-situ investigation of shear force induced solution phase transformation of ABA-type tri-block copolymers","authors":"Jun Wang , Haofeng Sun , Zhijing Han , Mengjia Dou , Haitao Hu , He Cheng , Chunyong He , Zhenhua Xie , Hanqiu Jiang , Naisheng Jiang , Xin Tong , Yubin Ke , Hua Yang","doi":"10.1016/j.colcom.2025.100839","DOIUrl":"10.1016/j.colcom.2025.100839","url":null,"abstract":"<div><div>Interplay between self-assembly and phase behaviors for block copolymer under external force is one of the significant research directions in materials science. Rheo-small-angle neutron scattering (Rheo-SANS) is a powerful in situ tool that enables the investigation of this subject. Herein, we present the installation and commissioning of the Rheo-SANS instrument, in conjunction with an Anton-Paar MCR 302e rheometer, at the small-angle neutron scattering beamline (BL01) of the China Spallation Neutron Source (CSNS). We provide a detailed description of the design, construction and technical specifications of the Rheo-SANS instrument. Taking advantage of this newly built Rheo-SANS facility, we are able to investigate the phase transformation behavior of block copolymer under external shear force, which is otherwise impossible for traditional characterization methods. We demonstrate through Rheo-SANS experiment that for block copolymer with small packing parameter (Pluronic F127), shear force can cause orientation of the Hcp phase in solid-like state. While in liquid-like state, shear force hardly orients the system. On the contrary, for block copolymer with large packing parameter (Pluronic L64), shear force can easily cause orientation of the lamella phase in liquid-like state, while in solid-like state, much large shear force is needed to induce the orientation of the lamella phase.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"67 ","pages":"Article 100839"},"PeriodicalIF":4.7,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143899816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maoxiang Chen , Chunying Dong , Haifeng Chen , Yuan Li , Meiqiang Cai , Yan Chen , Micong Jin
{"title":"Enhanced electron transport and selective reduction of nitrate to nitrogen by sludge biochar-supported nanoscale zero-valent iron","authors":"Maoxiang Chen , Chunying Dong , Haifeng Chen , Yuan Li , Meiqiang Cai , Yan Chen , Micong Jin","doi":"10.1016/j.colcom.2025.100838","DOIUrl":"10.1016/j.colcom.2025.100838","url":null,"abstract":"<div><div>In the process of nitrate reduction by nano zero-valent iron (nZVI), the preparation of nZVI/sludge biochar (nZVI/SBC) by introducing SBC will help to improve the aggregation and low nitrogen selectivity. Herein, the pyrolysis temperature of SBC was changed, and the excellent reduction capacity with the minimum charge transfer resistance were obtained at 300 °C. In addition, nZVI/SBC prepared with a mass ratio of 1:1 obtained a nitrate removal efficiency of 95.23 % and a nitrogen selectivity of 35.33 %. The corrosion of Fe<sup>0</sup> at the appropriate ratio provided sufficient electrons for the reduction, and the further transformation into Fe<sub>3</sub>O<sub>4</sub> promoted the outward transport of electrons. The electrons were transferred to the solid surface through the SBC, which promoted the accumulation and collision of nitrogen intermediates and induced the production of nitrogen. The nitrate removal efficiency of nZVI/SBC remained above 66 % in the wide pH range (3.0–11.0), which demonstrated practical nitrate remediation capabilities.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"67 ","pages":"Article 100838"},"PeriodicalIF":4.7,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143869646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scalable manufacturing of layered nanoparticle-polymer composite films through evaporative assembly","authors":"Shaveen Fernando, Surita R. Bhatia","doi":"10.1016/j.colcom.2025.100837","DOIUrl":"10.1016/j.colcom.2025.100837","url":null,"abstract":"<div><div>This work explores stratification, a prescribed spatial variation of components in a multi-component film, in particle-polymer films prepared by a single-step evaporative drying technique. Our overall goal is to develop a more efficient and cost-effective way to create vertically structured multi-component polymer and colloid films. Films containing poly(acrylic acid) (PAA) chains and polystyrene (PS) colloidal nanoparticles were analyzed using microbeam small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) to probe the impact of evaporation rates and colloid sizes on stratification behavior. Under slow drying conditions, particle-on-top stratification was observed, consistent with a diffusive model of stratification behavior. Conversely, moderate evaporation rates resulted in non-stratified configurations for certain mixtures. Fast evaporation, achieved by drying at elevated temperatures, induced polymer-on-top stratification, which aligns with predictions from simulations. Overall, this study proposes a more efficient method for creating vertically structured films, with implications for various industries.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"66 ","pages":"Article 100837"},"PeriodicalIF":4.7,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143847896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rebeca Fortes Martín, Sibylle Rustig, Ilko Bald, Joachim Koetz
{"title":"Tuning surface assembly of oleyl-capped nanoparticles in AOT microemulsion phase with optimal alkane-to-alkanol ratio","authors":"Rebeca Fortes Martín, Sibylle Rustig, Ilko Bald, Joachim Koetz","doi":"10.1016/j.colcom.2025.100836","DOIUrl":"10.1016/j.colcom.2025.100836","url":null,"abstract":"<div><div>A simplified procedure for the surface assembly of oleyl-capped nanoparticles from water-in-oil microemulsions is presented. Changing the heptane-to-pentanol ratio in the oil phase resulted in different surface assemblies. Remarkably, a minor proportion of heptane in pentanol enabled the formation of filament networks, without the assistance of other additives for clustering effects.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"66 ","pages":"Article 100836"},"PeriodicalIF":4.7,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143799312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huidan Wei , Jing Wen , Sai Yan , Han Zhang , Yuan Liu , Yuhan Xia , Jidong Li , Ran Cao , Meifang Zhu
{"title":"Adjusting morphologies of wound dressing by transferring skin textures through electrospinning technology","authors":"Huidan Wei , Jing Wen , Sai Yan , Han Zhang , Yuan Liu , Yuhan Xia , Jidong Li , Ran Cao , Meifang Zhu","doi":"10.1016/j.colcom.2025.100835","DOIUrl":"10.1016/j.colcom.2025.100835","url":null,"abstract":"<div><div>Surface topography and mechanical properties of wound dressing significantly influence cell behavior and tissue regeneration process. Skin has unique textures, which are often overlooked in the preparation of wound dressings. Herein, we fabricated biomimetic wound dressings by transferring the surface textures of skin through electrospinning technology. Specifically, the top and bottom surface of pig skin employed as substrates for the collection of electrospinning nanofibers composed of polylactic acid and gelatin (PLLA/GL). Due to the existence of hair on the top surface of pig skin, the transferred nanofiber membrane (skin-top) exhibited scattered small pores (∼50 μm). In contrast, the transferred nanofiber membrane with aluminum foil (Al) as substrate displayed a smooth surface. Benefit from the unique surface properties of skin, the skin-based nanofiber membrane demonstrated improved roughness and enhanced air permeability. Specifically, skin-top based wound dressing showed the best performance in promoting wound healing, including enhanced epithelialization and collagen deposition.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"66 ","pages":"Article 100835"},"PeriodicalIF":4.7,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143806965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Auriemma , Maria Isabella Maremonti , Edmondo Battista , Filippo Causa
{"title":"A CFD simulation tool for experimental prediction of inflow polymeric microdroplet formation in a T-junction configuration","authors":"Maria Auriemma , Maria Isabella Maremonti , Edmondo Battista , Filippo Causa","doi":"10.1016/j.colcom.2025.100834","DOIUrl":"10.1016/j.colcom.2025.100834","url":null,"abstract":"<div><div>A simulation tool to predict the morphological features and dynamics of polymeric microdroplets in a microfluidic T-junction is presented. A phase-diagram of regimes is created moving from dripping to squeezing within ranges of 10<sup>−2</sup>–10<sup>−4</sup> and 10<sup>−1</sup>–10<sup>−3</sup> for Reynolds and Capillary numbers, respectively. The simulations show the strong influence of the continuous phase over the droplet size, which changes two orders of magnitude -increasing from 10<sup>1</sup> to 10<sup>2</sup> μm- as the flowrate becomes higher.</div><div>The phase-diagram allows to choose the optimal fluid-flow conditions to have a precise and stable dripping production of spherical drops. Indeed, a successful down-scaling of drop size up to ∼10<sup>1</sup> μm with a drop rate production of ∼40 drops/s is obtained, with a great accordance between simulative and experimental results (error < 1 %), at high monodispersity (polydispersity index<0.05). Therefore, our tool has proved to be a powerful approach to predict and regulate polymeric microdroplet production in microfluidics.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"66 ","pages":"Article 100834"},"PeriodicalIF":4.7,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiaoyue Ren , Rui Wang , Bingfeng Wu , Dingming Huang , Ding Xiong , Yu Shi , Zhenming Wang
{"title":"Bioenergetic-active cryogels for potential application in wound healing","authors":"Qiaoyue Ren , Rui Wang , Bingfeng Wu , Dingming Huang , Ding Xiong , Yu Shi , Zhenming Wang","doi":"10.1016/j.colcom.2025.100830","DOIUrl":"10.1016/j.colcom.2025.100830","url":null,"abstract":"<div><div>Effective wound healing remains a challenge in clinical medicine due to limitations in traditional dressings, which often lack the necessary biocompatibility, breathability and ability to provide bioenergy. In this study, we developed bioenergetic-active cryogels using adenosine salts (AMP<img>2Na, ADP-2Na, and ATP<img>2Na) as crosslinkers to enhance tissue regeneration through improved energy metabolism. The cryogels feature a porous and loose structure that facilitates water and gas exchange, as well as the absorption of wound exudate. Additionally, ATP-2Na-coordinated cryogel (G-ATP) stimulates cellular proliferation and migration, while exhibiting anti-inflammatory properties, thus creating an optimal environment for wound repair. In vivo experiments in a full-thickness wound model showed accelerated healing with the G-ATP group, which outperformed control groups in wound contraction and collagen deposition. These findings suggest that G-ATP serve as breathable physical barriers and bioactive dressings that enhance healing by supporting cellular energy needs. This novel approach provides a promising platform for advanced wound care, with potential applications in tissue engineering and regenerative medicine.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"66 ","pages":"Article 100830"},"PeriodicalIF":4.7,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143725796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yinggang Liu , Zunqing Liu , Guofei Chen , Xingzhong Fang
{"title":"Synthesis and characterization of enhanced hydrophobic polysilazane coatings with high transparency and durability","authors":"Yinggang Liu , Zunqing Liu , Guofei Chen , Xingzhong Fang","doi":"10.1016/j.colcom.2025.100832","DOIUrl":"10.1016/j.colcom.2025.100832","url":null,"abstract":"<div><div>The development of transparent hydrophobic coatings with durability is crucial required both optical transparency and hydrophobic properties for application. In this study, a series of durable, transparent and hydrophobic coatings were prepared by dispersing hydrophobic fumed silica (SiO<sub>2</sub>) in the fluorinated polysilazanes (FPSZ) matrix and then spraying the mixture onto microscope slides. The coating FPC-1 achieved excellent comprehensive performances showing a water contact angle of 125°, a transmittance of 88.9 % at 400 nm, a pencil hardness of 6H, and an adhesion class of 5B. In addition, the coating of FPC-1 could withstand chemical corrosion for 7 days and 100 cycles of abrasion without significant degradation. These coatings show has great potential for applications in transparent optical devices.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"66 ","pages":"Article 100832"},"PeriodicalIF":4.7,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin Liu , Tianle Liu , Chi Zhang , Ziyou Wang , Xinyi Zhang , Chuanchuan Hao , Dan Wang , Guohui Cheng
{"title":"A mitochondrial-targeted nanomedicine based on hollow mesoporous silica nanoparticles for enhanced colorectal cancer therapy","authors":"Jin Liu , Tianle Liu , Chi Zhang , Ziyou Wang , Xinyi Zhang , Chuanchuan Hao , Dan Wang , Guohui Cheng","doi":"10.1016/j.colcom.2025.100833","DOIUrl":"10.1016/j.colcom.2025.100833","url":null,"abstract":"<div><div>By focusing on mitochondria as a therapeutic target, strategies can be devised to deplete ATP levels, thereby potentially circumventing the emergence of MDR. In this study, we developed a surface-modified hyaluronic acid (HA), mitochondrial targeted hollow mesoporous silicon nanomedicine (PB@HMSN-HA) co-loaded with berberine (BBR) and paclitaxel (PTX) for enhanced colorectal cancer therapy. The modified HA can selectively bind to tumor cells that overexpress the CD44 receptor, leading to the accumulation of PB@HMSN-HA at the tumor site and improving tumor targeting efficiency. After cellular internalization, the liberated positively charged BBR, which is specifically targeted to mitochondria, induces a reduction in ATP levels. Depletion of ATP subsequently results in a reduction of drug efflux, thereby amplifying the antitumor efficacy of PTX. Therefore, this combination therapy strategy targeting mitochondria serves as an important reference for clinical oncological chemotherapy.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"66 ","pages":"Article 100833"},"PeriodicalIF":4.7,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143686173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}