Mohammad Hossein Khoeini , Azahara Luna-Triguero , Maja Rücker
{"title":"反相气相色谱法检测超疏水性聚四氟乙烯粉末中水的成核","authors":"Mohammad Hossein Khoeini , Azahara Luna-Triguero , Maja Rücker","doi":"10.1016/j.colcom.2025.100849","DOIUrl":null,"url":null,"abstract":"<div><div>Nucleation of water on superhydrophobic surfaces is critical to applications such as water harvesting, thermal management, and energy systems. Despite their hierarchical roughness and hydrophobic nature, such surfaces can contain nano-scale hydrophilic sites that promote strong adhesion and disrupt droplet departure mechanisms, reducing condensation efficiency. Identifying and characterizing these confined sites is challenging due to the resolution limitations and operational constraints of conventional techniques. This study employs novel characterization techniques, Inverse Gas Chromatography (IGC) and Dynamic Vapor Sorption (DVS), to detect and characterize critical properties of these hydrophilic sites. IGC quantifies surface energy components and intrinsic wettability, while DVS and IGC at controlled relative humidity identify the nucleation onset. Furthermore, IGC under humidity control demonstrates the capability to precisely pinpoint nucleation onset, circumventing DVS’s mass sensitivity limitations. Collectively, these advanced methods provide more comprehensive understanding of surface heterogeneity and offer new insights into optimizing super-hydrophobic surfaces for enhanced condensation performance.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"67 ","pages":"Article 100849"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting nucleation of water in superhydrophobic PTFE powders using Inverse Gas Chromatography\",\"authors\":\"Mohammad Hossein Khoeini , Azahara Luna-Triguero , Maja Rücker\",\"doi\":\"10.1016/j.colcom.2025.100849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nucleation of water on superhydrophobic surfaces is critical to applications such as water harvesting, thermal management, and energy systems. Despite their hierarchical roughness and hydrophobic nature, such surfaces can contain nano-scale hydrophilic sites that promote strong adhesion and disrupt droplet departure mechanisms, reducing condensation efficiency. Identifying and characterizing these confined sites is challenging due to the resolution limitations and operational constraints of conventional techniques. This study employs novel characterization techniques, Inverse Gas Chromatography (IGC) and Dynamic Vapor Sorption (DVS), to detect and characterize critical properties of these hydrophilic sites. IGC quantifies surface energy components and intrinsic wettability, while DVS and IGC at controlled relative humidity identify the nucleation onset. Furthermore, IGC under humidity control demonstrates the capability to precisely pinpoint nucleation onset, circumventing DVS’s mass sensitivity limitations. Collectively, these advanced methods provide more comprehensive understanding of surface heterogeneity and offer new insights into optimizing super-hydrophobic surfaces for enhanced condensation performance.</div></div>\",\"PeriodicalId\":10483,\"journal\":{\"name\":\"Colloid and Interface Science Communications\",\"volume\":\"67 \",\"pages\":\"Article 100849\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Interface Science Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215038225000330\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038225000330","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Detecting nucleation of water in superhydrophobic PTFE powders using Inverse Gas Chromatography
Nucleation of water on superhydrophobic surfaces is critical to applications such as water harvesting, thermal management, and energy systems. Despite their hierarchical roughness and hydrophobic nature, such surfaces can contain nano-scale hydrophilic sites that promote strong adhesion and disrupt droplet departure mechanisms, reducing condensation efficiency. Identifying and characterizing these confined sites is challenging due to the resolution limitations and operational constraints of conventional techniques. This study employs novel characterization techniques, Inverse Gas Chromatography (IGC) and Dynamic Vapor Sorption (DVS), to detect and characterize critical properties of these hydrophilic sites. IGC quantifies surface energy components and intrinsic wettability, while DVS and IGC at controlled relative humidity identify the nucleation onset. Furthermore, IGC under humidity control demonstrates the capability to precisely pinpoint nucleation onset, circumventing DVS’s mass sensitivity limitations. Collectively, these advanced methods provide more comprehensive understanding of surface heterogeneity and offer new insights into optimizing super-hydrophobic surfaces for enhanced condensation performance.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.