{"title":"Beyond photosynthesis: Engineering self-healing photocatalytic systems for sustainability","authors":"Roya Mohammadzadeh Kakhki","doi":"10.1016/j.colcom.2025.100842","DOIUrl":null,"url":null,"abstract":"<div><div>Self-repairing photocatalysts represent a groundbreaking advancement in photocatalysis, addressing key challenges such as catalyst degradation, material fatigue, and efficiency loss across diverse applications. Inspired by natural photosynthesis, these systems incorporate self-healing mechanisms that restore functionality and extend operational lifespans, even under harsh environmental conditions. This review delves into the fundamental principles, innovative design strategies, and emerging trends in self-repairing photocatalysts, emphasizing their transformative potential in sustainable fuel production, environmental remediation, and carbon fixation.</div><div>Key topics include molecular-level self-repair mechanisms, surface regeneration, bio-inspired adaptive interfaces, and multi-step repair strategies. Advanced characterization techniques, such as in situ monitoring and time-resolved spectroscopy, are highlighted for their role in optimizing self-healing processes. The synergy between photocatalytic activity and self-repair capabilities is explored through applications such as water splitting, CO₂ reduction, and wastewater treatment, showcasing systems that effectively mitigate degradation.Bio-inspired approaches, including peptide-based self-assembly and metal-organic frameworks, demonstrate exceptional stability and efficiency in photocatalytic systems. Additionally, cutting-edge molecular repair mechanisms, such as artificial enzyme cascades and dynamic covalent chemistry, are examined for their potential to enhance system longevity and performance. Advancements in <em>real-time</em> electron microscopy and AI-assisted degradation monitoring are also reviewed, offering insights into atomic-level repair processes and enabling predictive maintenance to sustain long-term functionality. The review further highlights the implementation of self-repairing photocatalysts in industrial-scale applications, including solar fuel production, CO₂ reduction, and wastewater treatment. Challenges related to scalability, cost-effectiveness, and long-term stability are addressed, with proposed solutions to overcome these barriers. Future research directions emphasize quantum dot-based self-repair systems, bio-hybrid catalysts, and AI-driven adaptive responses, paving the way for commercially viable, self-maintaining photocatalytic systems. These innovations hold immense promise for advancing sustainable energy production, environmental remediation, and carbon fixation, offering critical solutions to global sustainability challenges.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"67 ","pages":"Article 100842"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038225000263","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Self-repairing photocatalysts represent a groundbreaking advancement in photocatalysis, addressing key challenges such as catalyst degradation, material fatigue, and efficiency loss across diverse applications. Inspired by natural photosynthesis, these systems incorporate self-healing mechanisms that restore functionality and extend operational lifespans, even under harsh environmental conditions. This review delves into the fundamental principles, innovative design strategies, and emerging trends in self-repairing photocatalysts, emphasizing their transformative potential in sustainable fuel production, environmental remediation, and carbon fixation.
Key topics include molecular-level self-repair mechanisms, surface regeneration, bio-inspired adaptive interfaces, and multi-step repair strategies. Advanced characterization techniques, such as in situ monitoring and time-resolved spectroscopy, are highlighted for their role in optimizing self-healing processes. The synergy between photocatalytic activity and self-repair capabilities is explored through applications such as water splitting, CO₂ reduction, and wastewater treatment, showcasing systems that effectively mitigate degradation.Bio-inspired approaches, including peptide-based self-assembly and metal-organic frameworks, demonstrate exceptional stability and efficiency in photocatalytic systems. Additionally, cutting-edge molecular repair mechanisms, such as artificial enzyme cascades and dynamic covalent chemistry, are examined for their potential to enhance system longevity and performance. Advancements in real-time electron microscopy and AI-assisted degradation monitoring are also reviewed, offering insights into atomic-level repair processes and enabling predictive maintenance to sustain long-term functionality. The review further highlights the implementation of self-repairing photocatalysts in industrial-scale applications, including solar fuel production, CO₂ reduction, and wastewater treatment. Challenges related to scalability, cost-effectiveness, and long-term stability are addressed, with proposed solutions to overcome these barriers. Future research directions emphasize quantum dot-based self-repair systems, bio-hybrid catalysts, and AI-driven adaptive responses, paving the way for commercially viable, self-maintaining photocatalytic systems. These innovations hold immense promise for advancing sustainable energy production, environmental remediation, and carbon fixation, offering critical solutions to global sustainability challenges.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.