Yanhong Gu , Yuen Li , Kelan Wang , Lanlan Ge , Chenyue Mao , Weiying Zhang , Jianguo Zhao , Yaohua Hu , Xianghui Zhang , Wanping Chen , Yanmin Jia
{"title":"通过Ti和Al2O3涂层,大大增强了TiO2纳米颗粒对浓染废水的摩擦催化净化效果","authors":"Yanhong Gu , Yuen Li , Kelan Wang , Lanlan Ge , Chenyue Mao , Weiying Zhang , Jianguo Zhao , Yaohua Hu , Xianghui Zhang , Wanping Chen , Yanmin Jia","doi":"10.1016/j.colcom.2025.100851","DOIUrl":null,"url":null,"abstract":"<div><div>TiO<sub>2</sub> nanoparticles with high chemical stability, low cost and non-toxicity are attractive for large-scale catalytic applications. Non-piezoelectric amorphous TiO<sub>2</sub> nanoparticles were experimentally developed for the efficient degradation of dyes under mechanical friction induced by low-speed stirring at 400 rpm. The friction between the catalyst surface and the rotating disk promotes the transition of valence-band electrons in TiO<sub>2</sub>, generating electron-hole pairs. These pairs subsequently react with hydroxide ions and dissolved oxygen in the dye solution to produce superoxide radicals and hydroxyl radicals, enabling the degradation of organic dyes under tribo-catalytic conditions. Al<sub>2</sub>O<sub>3</sub> substrates were optimized compared to glass substrates. Non-piezoelectric amorphous TiO<sub>2</sub> nanoparticles were mechanically stirred at 400 rpm for 2 h and 2.5 h. Under these conditions, high-concentration methyl orange (30 mg/L) and methylene blue (20 mg/L) degraded by 99 % and 100 %, respectively. The tribocatalytic performance achieved for TiO<sub>2</sub> nanoparticles in this study is highly competitive for environmental remediation.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"67 ","pages":"Article 100851"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greatly enhanced tribocatalytic purification of concentrated dye wastewater by TiO2 nanoparticles through Ti and Al2O3 coatings\",\"authors\":\"Yanhong Gu , Yuen Li , Kelan Wang , Lanlan Ge , Chenyue Mao , Weiying Zhang , Jianguo Zhao , Yaohua Hu , Xianghui Zhang , Wanping Chen , Yanmin Jia\",\"doi\":\"10.1016/j.colcom.2025.100851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>TiO<sub>2</sub> nanoparticles with high chemical stability, low cost and non-toxicity are attractive for large-scale catalytic applications. Non-piezoelectric amorphous TiO<sub>2</sub> nanoparticles were experimentally developed for the efficient degradation of dyes under mechanical friction induced by low-speed stirring at 400 rpm. The friction between the catalyst surface and the rotating disk promotes the transition of valence-band electrons in TiO<sub>2</sub>, generating electron-hole pairs. These pairs subsequently react with hydroxide ions and dissolved oxygen in the dye solution to produce superoxide radicals and hydroxyl radicals, enabling the degradation of organic dyes under tribo-catalytic conditions. Al<sub>2</sub>O<sub>3</sub> substrates were optimized compared to glass substrates. Non-piezoelectric amorphous TiO<sub>2</sub> nanoparticles were mechanically stirred at 400 rpm for 2 h and 2.5 h. Under these conditions, high-concentration methyl orange (30 mg/L) and methylene blue (20 mg/L) degraded by 99 % and 100 %, respectively. The tribocatalytic performance achieved for TiO<sub>2</sub> nanoparticles in this study is highly competitive for environmental remediation.</div></div>\",\"PeriodicalId\":10483,\"journal\":{\"name\":\"Colloid and Interface Science Communications\",\"volume\":\"67 \",\"pages\":\"Article 100851\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Interface Science Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215038225000354\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038225000354","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Greatly enhanced tribocatalytic purification of concentrated dye wastewater by TiO2 nanoparticles through Ti and Al2O3 coatings
TiO2 nanoparticles with high chemical stability, low cost and non-toxicity are attractive for large-scale catalytic applications. Non-piezoelectric amorphous TiO2 nanoparticles were experimentally developed for the efficient degradation of dyes under mechanical friction induced by low-speed stirring at 400 rpm. The friction between the catalyst surface and the rotating disk promotes the transition of valence-band electrons in TiO2, generating electron-hole pairs. These pairs subsequently react with hydroxide ions and dissolved oxygen in the dye solution to produce superoxide radicals and hydroxyl radicals, enabling the degradation of organic dyes under tribo-catalytic conditions. Al2O3 substrates were optimized compared to glass substrates. Non-piezoelectric amorphous TiO2 nanoparticles were mechanically stirred at 400 rpm for 2 h and 2.5 h. Under these conditions, high-concentration methyl orange (30 mg/L) and methylene blue (20 mg/L) degraded by 99 % and 100 %, respectively. The tribocatalytic performance achieved for TiO2 nanoparticles in this study is highly competitive for environmental remediation.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.