Soft Matter最新文献

筛选
英文 中文
Dynamics of switching processes: general results and applications in intermittent active motion 切换过程的动力学:间歇性主动运动的一般结果和应用。
IF 2.9 3区 化学
Soft Matter Pub Date : 2024-11-06 DOI: 10.1039/D4SM01054J
Ion Santra, Kristian Stølevik Olsen and Deepak Gupta
{"title":"Dynamics of switching processes: general results and applications in intermittent active motion","authors":"Ion Santra, Kristian Stølevik Olsen and Deepak Gupta","doi":"10.1039/D4SM01054J","DOIUrl":"10.1039/D4SM01054J","url":null,"abstract":"<p >Systems switching between different dynamical phases is a ubiquitous phenomenon. The general understanding of such a process is limited. To this end, we present a general expression that captures fluctuations of a system exhibiting a switching mechanism. Specifically, we obtain an exact expression of the Laplace-transformed characteristic function of the particle's position. Then, the characteristic function is used to compute the effective diffusion coefficient of a system performing intermittent dynamics. Furthermore, we employ two examples: (1) generalized run-and-tumble active particle, and (2) an active particle switching its dynamics between generalized active run-and-tumble motion and passive Brownian motion. In each case, explicit computations of the spatial cumulants are presented. Our findings reveal that the particle's position probability density function exhibit rich behaviours due to intermittent activity. Numerical simulations confirm our findings.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 47","pages":" 9360-9372"},"PeriodicalIF":2.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sm/d4sm01054j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-assembly of cellulose nanocrystals and gold nanorods: insights from molecular dynamics modelling† 纤维素纳米晶体与金纳米棒的共组装:分子动力学建模的启示。
IF 2.9 3区 化学
Soft Matter Pub Date : 2024-11-06 DOI: 10.1039/D4SM00871E
Jiaxin Hou, William Sampson and Ahu Gümrah Dumanli
{"title":"Co-assembly of cellulose nanocrystals and gold nanorods: insights from molecular dynamics modelling†","authors":"Jiaxin Hou, William Sampson and Ahu Gümrah Dumanli","doi":"10.1039/D4SM00871E","DOIUrl":"10.1039/D4SM00871E","url":null,"abstract":"<p >A coarse-grained molecular dynamics model is developed to explore the co-assembly of cellulose nanocrystals (CNCs) and gold nanorods (AuNRs) under sedimentation conditions with varying volumetric concentration and particle-size ratios. Simulations and statistical analysis reveal a noticable preferential attachment of AuNRs on the surface of CNC clusters as the solid fraction of AuNRs was increased when the volumetric fraction of the AuNRs was low. Density-driven self-assembly under sedimentation forces is primarily driven by the AuNRs. This shift in the dominant mechanism from CNCs to AuNRs reveals the limits of multi-particle interactions and formation of ordered structures in binary particle systems. The fundamental insights provided in this work into the self-assembly process in complex particle systems are valuable for the design and control of the physical conditions to achieve desired ordered structures.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 46","pages":" 9232-9239"},"PeriodicalIF":2.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sm/d4sm00871e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thin free-standing liquid films manipulation: device design to turn on/off gravity in flow regimes for thickness map control and for material structuring. 操纵独立的薄液膜:在流动状态下开启/关闭重力的装置设计,以控制厚度图和材料结构。
IF 2.9 3区 化学
Soft Matter Pub Date : 2024-11-06 DOI: 10.1039/d4sm00951g
Paolo Iaccarino, Zhe Wang, Andrea Marfuggi, Simone Russo, Vincenzo Ferraro, Giuseppe Vitiello, Sara Coppola, Ernesto Di Maio
{"title":"Thin free-standing liquid films manipulation: device design to turn on/off gravity in flow regimes for thickness map control and for material structuring.","authors":"Paolo Iaccarino, Zhe Wang, Andrea Marfuggi, Simone Russo, Vincenzo Ferraro, Giuseppe Vitiello, Sara Coppola, Ernesto Di Maio","doi":"10.1039/d4sm00951g","DOIUrl":"10.1039/d4sm00951g","url":null,"abstract":"<p><p>The manipulation and control of free-standing liquid film drainage dynamics is of paramount importance in many technological fields and related products, ranging from liquid lenses to liquid foams and 2D structures. In this context, we theoretically design and introduce a device where we can reversibly drive flow regime switch between viscous-capillary and viscous-gravity in a thin free-standing liquid film by altering its shape, allowing us to manipulate and stabilize the film thickness over time. The device, which mainly consists of a syringe pump, a pressure transducer, and a 3D-printed cylinder, is coupled with a digital holography setup to measure, in real time, the evolution of the local film thickness map, revealing characteristic features of viscous-capillary and viscous-gravity driven drainage regimes. By using polyvinyl alcohol/water concentrated solutions, we are also able to produce viscoelastic membranes after manipulation and water evaporation, which presents manipulation history-dependent geometrical properties. Furthermore, using a system composed of carboxymethyl cellulose, water, and rod-like zinc oxide nanoparticles, we show a clear effect of film manipulation on particle rearrangement. We believe this device could represent a starting point for the development of a useful and practical tool to study thin liquid film dynamics and to produce novel (patterned) 2D structures for the numerous scientific and technical fields where they are of use.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-consistent electrostatic formalism of bulk electrolytes based on the asymmetric treatment of the short- and long-range ion interactions† 基于短程和长程离子相互作用的非对称处理的体电解质自洽静电形式主义。
IF 2.9 3区 化学
Soft Matter Pub Date : 2024-11-06 DOI: 10.1039/D4SM01174K
Sahin Buyukdagli
{"title":"Self-consistent electrostatic formalism of bulk electrolytes based on the asymmetric treatment of the short- and long-range ion interactions†","authors":"Sahin Buyukdagli","doi":"10.1039/D4SM01174K","DOIUrl":"10.1039/D4SM01174K","url":null,"abstract":"<p >We predict the thermodynamic behavior of bulk electrolytes from an ionic hard-core (HC) size-augmented self-consistent formalism incorporating asymmetrically the short- and long-range ion interactions <em>via</em> their virial and cumulant treatment, respectively. The characteristic splitting length separating these two ranges is obtained from a variational equation solved together with the Schwinger–Dyson (SD) equations. <em>Via</em> comparison with simulation results from the literature, we show that the asymmetric treatment of the distinct interaction ranges significantly extends the validity regime of our previously developed purely cumulant-level Debye–Hückel (DH) theory. Namely, for monovalent solutions with typical ion sizes, the present formalism can accurately predict up to molar concentrations the liquid pressure dominated by HC interactions, the internal energies driven by charge correlations, and the local ion distributions governed by the competition between HC and electrostatic interactions. We evaluate as well the screening length of the liquid and investigate the deviations of the macromolecular interaction range from the DH length. In fair agreement with simulations and experiments, our theory is shown to reproduce the overscreening and underscreening effects occurring respectively in submolar mono- and multivalent electrolytes.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 45","pages":" 9104-9116"},"PeriodicalIF":2.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogel-based 3D fabrication of multiple replicas with varying sizes and materials from a single template via iterative shrinking† 基于水凝胶的三维制造技术,通过迭代收缩,从单一模板中制造出多个不同尺寸和材料的复制品。
IF 2.9 3区 化学
Soft Matter Pub Date : 2024-11-06 DOI: 10.1039/D4SM00835A
Eunseok Heo, Hye Been Koo, Jun Chang Yang, In Cho, Hyun-Hee Lee, Yong-Jin Yoon, Steve Park and Jae-Byum Chang
{"title":"Hydrogel-based 3D fabrication of multiple replicas with varying sizes and materials from a single template via iterative shrinking†","authors":"Eunseok Heo, Hye Been Koo, Jun Chang Yang, In Cho, Hyun-Hee Lee, Yong-Jin Yoon, Steve Park and Jae-Byum Chang","doi":"10.1039/D4SM00835A","DOIUrl":"10.1039/D4SM00835A","url":null,"abstract":"<p >3D printing technologies have been widely used for the rapid prototyping of 3D structures, but their application in a broader context has been hampered by their low printing throughput. For the same structures to be produced in a variety of sizes and materials, each must be printed separately, which increases time and cost. Replicating 3D-printed structures in a variety of sizes using a molding process with size-tunable molds could be a solution, but it has only been applied to simple structures, such as those with tapered or vertical profiles. This work demonstrates the generation of multiple replicas of varying sizes and materials from a single 3D-printed template with complex geometries by using molds made of stretchable hydrogel that shrink isotropically. We optimize hydrogel compositions to synthesize a hydrogel that is highly stretchable and shrinks isotropically in all directions. The high stretchability of this hydrogel allows for the removal of complex 3D-printed templates from hydrogel molds. The cavities of the hydrogel molds are then filled with polycaprolactone (PCL) and dried at 80 °C. As the hydrogel shrinks due to drying, the melted PCL fragments completely fill the cavities. The entire process can be repeated to produce multiple replicas in a variety of sizes and materials. Replicas that are one-tenth of the size of the original printed template can be produced. Finally, we demonstrate how our method can be used to reduce the size of interconnected geometries, which would be impossible to achieve using traditional molding processes.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 46","pages":" 9249-9260"},"PeriodicalIF":2.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light scattering study of algal floc growth and structure: alum vs. polymeric plant-derived flocculant. 藻类絮体生长和结构的光散射研究:明矾与植物衍生聚合物絮凝剂。
IF 2.9 3区 化学
Soft Matter Pub Date : 2024-11-06 DOI: 10.1039/d4sm00837e
Temitope Orimolade, Ngoc-Tram Le, Lyle Trimble, Bandaru Ramarao, Sitaraman Krishnan
{"title":"Light scattering study of algal floc growth and structure: alum <i>vs.</i> polymeric plant-derived flocculant.","authors":"Temitope Orimolade, Ngoc-Tram Le, Lyle Trimble, Bandaru Ramarao, Sitaraman Krishnan","doi":"10.1039/d4sm00837e","DOIUrl":"10.1039/d4sm00837e","url":null,"abstract":"<p><p>The flocculation dynamics of <i>Microcystis aeruginosa</i> algal cultures using alum and aqueous <i>Moringa oleifera</i> seed extracts as flocculants were analyzed through light scattering and fractal analysis. Floc growth in continuously stirred <i>M. aeruginosa</i> suspensions, with cell densities ranging from 200 to 800 μg L<sup>-1</sup> chlorophyll <i>a</i> (Chl <i>a</i>), exhibited distinct patterns in fractal dimension (<i>d</i><sub>F</sub>) evolution relative to floc size: a smooth, monotonic increase; stochastic increase; and stabilization or leveling off. <i>d</i><sub>F</sub> values ranged from 1.3 to 2.6, with floc diameters (<i>D</i><sub>4,3</sub> volume-weighted mean) spanning 30 to 300 μm. Alum (0.1 to 0.4 g L<sup>-1</sup>) induced fast diffusion-limited flocculation, initially producing lower <i>d</i><sub>F</sub> values, which progressively increased due to structural rearrangement at a slower rate. In contrast, at sufficiently high concentrations (0.1 to 0.2 g L<sup>-1</sup> BSA equivalent), <i>M. oleifera</i> seed proteins facilitated stable, high <i>d</i><sub>F</sub> ≈ 2.0 early on, evidently through patch charge interactions. Flocs formed with alum were prone to shear-induced breakage, limiting both their size and stability, whereas <i>M. oleifera</i> extract produced larger, more stable flocs with greater resilience to shear due to robust particle network formation by the polymer. Both flocculants effectively treated 800 μg L<sup>-1</sup> Chl <i>a M. aeruginosa</i> suspensions, but <i>M. oleifera</i> extract demonstrated better performance in terms of floc size at similar mass concentrations. These findings highlight the potential of <i>Moringa</i> seed extract as a sustainable and effective alternative to conventional flocculants like alum, offering insights into their mechanisms and performance in flocculation processes.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fibrotaxis: gradient-free, spontaneous and controllable droplet motion on soft solids† Fibrotaxis:软固体上的无梯度、自发和可控液滴运动。
IF 2.9 3区 化学
Soft Matter Pub Date : 2024-11-06 DOI: 10.1039/D4SM01022A
Sthavishtha R. Bhopalam, Jesus Bueno and Hector Gomez
{"title":"Fibrotaxis: gradient-free, spontaneous and controllable droplet motion on soft solids†","authors":"Sthavishtha R. Bhopalam, Jesus Bueno and Hector Gomez","doi":"10.1039/D4SM01022A","DOIUrl":"10.1039/D4SM01022A","url":null,"abstract":"<p >Most passive droplet transport strategies rely on spatial variations of material properties to drive droplet motion, leading to gradient-based mechanisms with intrinsic length scales that limit the droplet velocity or the transport distance. Here, we propose droplet <em>fibrotaxis</em>, a novel mechanism that leverages an anisotropic fiber-reinforced deformable solid to achieve spontaneous and gradient-free droplet transport. Using high-fidelity simulations, we identify the fluid wettability, fiber orientation, anisotropy strength and elastocapillary number as critical parameters that enable controllable droplet velocity and long-range droplet transport. Our results highlight the potential of fibrotaxis as a droplet transport mechanism that can have a strong impact on self-cleaning surfaces, water harvesting and medical diagnostics.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 46","pages":" 9301-9311"},"PeriodicalIF":2.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sm/d4sm01022a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pairing-specific microstructure in depletion gels of bidisperse colloids 双分散胶体耗尽凝胶中的配对特异性微结构。
IF 2.9 3区 化学
Soft Matter Pub Date : 2024-11-05 DOI: 10.1039/D4SM00811A
Rony A. Waheibi and Lilian C. Hsiao
{"title":"Pairing-specific microstructure in depletion gels of bidisperse colloids","authors":"Rony A. Waheibi and Lilian C. Hsiao","doi":"10.1039/D4SM00811A","DOIUrl":"10.1039/D4SM00811A","url":null,"abstract":"<p >We report the ensemble-averaged and pairing-specific network microstructure formed by short-range depletion attractions in hard sphere-like colloidal systems. Gelation is induced by adding polystyrene molecules at a fixed concentration to colloids with different colloid bidispersity ratios (<em>α</em> = 1, 0.72, and 0.60) across a range of volume fractions (0.10 ≤ <em>ϕ</em> ≤ 0.40). 3D confocal microscopy imaging combined with a scale-invariant feature transform algorithm show that monodisperse colloids pack more efficiently, whereas increasing the size disparity leads to looser, more disordered, and sub-isostatic packings. Categorizing the structures formed by small and large particles reveal that certain cluster configurations may be favored due to the complex interplay between the differences in particle surface areas and attractive potentials. These pairwise bonds assemble to affect the density of tetrahedral and poly-tetrahedral clusters in bidisperse systems. With the exception of non-percolating samples at <em>ϕ</em> = 0.10, increasing the gel volume fraction leads to an increase in the number of nearest neighbors. However, the internal density within each cluster decreases, possibly due to kinetic arrest from the deeper potential wells of tetrahedral clusters at low volume fractions in which vertices are primarily made out of larger particles.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 45","pages":" 9083-9094"},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sm/d4sm00811a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active nematic coherence probed under spatial patterns of distributed activity† 在分布式活动的空间模式下探测主动神经相干性。
IF 2.9 3区 化学
Soft Matter Pub Date : 2024-11-05 DOI: 10.1039/D4SM00651H
Ignasi Vélez-Cerón, Jordi Ignés-Mullol and Francesc Sagués
{"title":"Active nematic coherence probed under spatial patterns of distributed activity†","authors":"Ignasi Vélez-Cerón, Jordi Ignés-Mullol and Francesc Sagués","doi":"10.1039/D4SM00651H","DOIUrl":"10.1039/D4SM00651H","url":null,"abstract":"<p >A photoresponsive variant of the paradigmatic active nematic fluid made of microtubules and powered by kinesin motors is studied in a conventional two-dimensional interface under blue-light illumination. This advantageously permits the system's performance to be assessed under conditions of spatially distributed activity. Both turbulent and flow aligning conditions are separately analyzed. Under uniform illuminating conditions, active flows get enhanced, in accordance with previous observations. In contrast, patterning the activity appears to disturb the effective activity measured in terms of the vorticity of the elicited flows. We interpret this result as alternative evidence of the important role played by the active length scale in setting not only the textural and flow characteristics of the active nematic but also, most importantly, the range of material integrity. Our research continues to explore perspectives that should pave the way for an effective control of such an admirable material.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 48","pages":" 9578-9585"},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape memory and recovery mechanism in hard magnetic soft materials† 硬磁软材料的形状记忆和恢复机制
IF 2.9 3区 化学
Soft Matter Pub Date : 2024-11-05 DOI: 10.1039/D4SM01165A
Rong Jia, Kai Tan and Qian Deng
{"title":"Shape memory and recovery mechanism in hard magnetic soft materials†","authors":"Rong Jia, Kai Tan and Qian Deng","doi":"10.1039/D4SM01165A","DOIUrl":"10.1039/D4SM01165A","url":null,"abstract":"<p >Hard-magnetic soft materials (HMSMs), which combine soft polymer matrices with hard-magnetic particles, have emerged as versatile materials capable of achieving complex deformations under magnetic fields. This work aims to provide a comprehensive understanding of the non-thermal shape memory and recovery mechanisms in HMSMs. By developing a theoretical model, we interpret the transfer of shape information between different field quantities, such as the remanent magnetization vectors and the magnetic forces. The two-dimensional thin beam model developed here implies that the two-way interaction between magnetization patterns and mechanical deformations is the key for the shape memory effect in HMSMs. Experiments also validate the theoretical model and the proposed mechanism for shape memory. Furthermore, the idea is extended to an example of information encryption and retrieval using HMSM thin films. This study offers valuable insights into the control of shape memory effects in HMSMs and presents opportunities for advancements in soft robotics, secure data storage, and responsive materials.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 45","pages":" 9095-9103"},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信