RSC Mechanochemistry最新文献

筛选
英文 中文
Exploring tribochemical transduction pathways for dehydrogenation of molecular hydrides† 探索分子氢化物脱氢的摩擦化学转导途径†
RSC Mechanochemistry Pub Date : 2025-01-04 DOI: 10.1039/D4MR00072B
Esmeralda Muñoz-Cortés, Fabrice Leardini, Marcello Conte, Adolfo del Campo, Eduardo Flores, Jose Ramon Ares and Roman Nevshupa
{"title":"Exploring tribochemical transduction pathways for dehydrogenation of molecular hydrides†","authors":"Esmeralda Muñoz-Cortés, Fabrice Leardini, Marcello Conte, Adolfo del Campo, Eduardo Flores, Jose Ramon Ares and Roman Nevshupa","doi":"10.1039/D4MR00072B","DOIUrl":"https://doi.org/10.1039/D4MR00072B","url":null,"abstract":"<p >Recent research has shown that mechanical energy can trigger dehydrogenation (hydrogen release) from metal and complex hydrides at room temperature, offering an alternative to traditional heat-based methods. This study investigates whether the tribochemical approach can also be effective to release hydrogen from molecular hydrides such as ethane 1,2-diamineborane (EDAB). Surprisingly, despite dehydrogenating at a lower temperature than metal and complex hydrides, EDAB exhibited faint hydrogen release under mechanical stress. To understand this behavior, the tribochemical decomposition pathways of EDAB were investigated using <em>operando</em> Mechanically Stimulated Gas Emission Mass Spectrometry in combination with other surface and material characterization techniques. The lack of hydrogen emission from EDAB is attributed to a combination of strong intramolecular bonds (covalent and dative bonds) within the molecule, and weak intermolecular interactions (hydrogen bonds and van der Waals forces) between EDAB molecules.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 2","pages":" 285-296"},"PeriodicalIF":0.0,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00072b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct arylation of gem-difluorostyrenes using in situ mechanochemically generated calcium-based heavy Grignard reagents† 用原位机械化学生成的钙基重格氏试剂直接芳基化宝石-二氟苯乙烯
RSC Mechanochemistry Pub Date : 2024-12-25 DOI: 10.1039/D4MR00135D
Xihong Wang, Yamato Fukuzawa, Pan Gao, Julong Jiang, Satoshi Maeda, Koji Kubota and Hajime Ito
{"title":"Direct arylation of gem-difluorostyrenes using in situ mechanochemically generated calcium-based heavy Grignard reagents†","authors":"Xihong Wang, Yamato Fukuzawa, Pan Gao, Julong Jiang, Satoshi Maeda, Koji Kubota and Hajime Ito","doi":"10.1039/D4MR00135D","DOIUrl":"https://doi.org/10.1039/D4MR00135D","url":null,"abstract":"<p >In this study, we disclosed that calcium-based heavy Grignard reagents, prepared <em>in situ</em> through a mechanochemical method, reacted with <em>gem</em>-difluorostyrenes in the absence of transition-metal catalysts to afford thermodynamically less favorable (<em>E</em>)-monofluorostilbenes with good to high stereoselectivity. To the best of our knowledge, this is the first example of nucleophilic substitution of a C(sp<small><sup>2</sup></small>)–F bond by an arylcalcium compound.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 2","pages":" 256-262"},"PeriodicalIF":0.0,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00135d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of a thermally stable 2D MOF via neat grinding and annealing of a panel-like triangular ligand with Zn(ii)† 用Zn(ii)†对面板状三角形配体进行研磨退火制备热稳定的二维MOF
RSC Mechanochemistry Pub Date : 2024-12-20 DOI: 10.1039/D4MR00118D
Stefano Elli, Manfredi Caruso, Alessandro Sacchetti and Javier Martí-Rujas
{"title":"Synthesis of a thermally stable 2D MOF via neat grinding and annealing of a panel-like triangular ligand with Zn(ii)†","authors":"Stefano Elli, Manfredi Caruso, Alessandro Sacchetti and Javier Martí-Rujas","doi":"10.1039/D4MR00118D","DOIUrl":"https://doi.org/10.1039/D4MR00118D","url":null,"abstract":"<p >A new exotridentate ligand, 1,3,5-tris(2-methylpyridin-4-yl)benzene (mTPB), was synthesized and self-assembled with ZnBr<small><sub>2</sub></small> in the solid-state <em>via</em> mechanochemistry (<em>i.e.</em>, neat grinding (NG)), followed by annealing. The amorphous phase generated by NG transformed into a crystalline structure corresponding to a 2D MOF (1) through an amorphous-to-crystalline transition. Compound 1 contains open 2D layers and exhibited thermal stablility up to 300 °C. Analogous 1,3,5-tris(pyridyl)benzene (TPB), upon NG, formed a poly-[<em>n</em>]-catenane of interlocked (M<small><sub>12</sub></small>L<small><sub>8</sub></small>) nanocages. This different behaviour was attributed to the presence of the methyl groups in the mTPB ligand.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 2","pages":" 188-192"},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00118d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aza-Michael addition by ball milling† Aza-Michael球磨加法†
RSC Mechanochemistry Pub Date : 2024-12-20 DOI: 10.1039/D4MR00133H
Leonarda Vugrin, Alen Bjelopetrović and Ivan Halasz
{"title":"Aza-Michael addition by ball milling†","authors":"Leonarda Vugrin, Alen Bjelopetrović and Ivan Halasz","doi":"10.1039/D4MR00133H","DOIUrl":"https://doi.org/10.1039/D4MR00133H","url":null,"abstract":"<p >Here, accompanied by <em>in situ</em> Raman monitoring, we adapt the aza-Michael addition for the formation of the C–N bond under mechanochemical conditions, enabling solvent- and catalyst-free synthesis and facile preparation of compounds that are challenging to obtain in solution.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 2","pages":" 184-187"},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00133h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of ball milling parameters on the mechano-chemical conversion of polyolefins† 球磨参数对聚烯烃机械-化学转化的影响。
RSC Mechanochemistry Pub Date : 2024-12-18 DOI: 10.1039/D4MR00098F
Adrian H. Hergesell, Claire L. Seitzinger, Justin Burg, Renate J. Baarslag and Ina Vollmer
{"title":"Influence of ball milling parameters on the mechano-chemical conversion of polyolefins†","authors":"Adrian H. Hergesell, Claire L. Seitzinger, Justin Burg, Renate J. Baarslag and Ina Vollmer","doi":"10.1039/D4MR00098F","DOIUrl":"10.1039/D4MR00098F","url":null,"abstract":"<p >Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood. Herein, we systematically investigate the influence of sphere material, milling frequency, plastic filling degree, and milling temperature. Heavy spheres and high milling frequencies boost hydrocarbon yields by maximizing mechanical forces and frequency of collisions. While the dose of kinetic energy is commonly used to describe mechano-chemical processes, we found that it does not capture the mechano-chemical depolymerization of polyolefins. Instead, we rationalized the results based on the Zhurkov equation, a model developed for the thermo-mechanical scission of polymers under stress. In addition, low plastic filling degrees allow for high percentage yields, but cause significant wear on the grinding tools, prohibiting sustained milling. Milling below 40 °C is beneficial for brittle chain cleavage and depolymerization. This study provides a new approach to rationalize the influence of individual milling parameters and their interplay and serves as a starting point to derive design principles for larger-scale mechano-chemical depolymerization processes.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 2","pages":" 263-272"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cubic structure of Li3As stabilized by pressure or configurational entropy via the solid solution Li3As–Li2Se†‡ Li3As的立方结构通过固溶体Li3As - li2se†‡通过压力或构型熵来稳定
RSC Mechanochemistry Pub Date : 2024-12-18 DOI: 10.1039/D4MR00127C
Martin Schmid, Florian Pielnhofer and Arno Pfitzner
{"title":"The cubic structure of Li3As stabilized by pressure or configurational entropy via the solid solution Li3As–Li2Se†‡","authors":"Martin Schmid, Florian Pielnhofer and Arno Pfitzner","doi":"10.1039/D4MR00127C","DOIUrl":"https://doi.org/10.1039/D4MR00127C","url":null,"abstract":"<p >The hexagonal to cubic phase transition of Li<small><sub>3</sub></small>As was investigated at high pressure and temperature, revealing a cubic high-pressure polymorph in the Li<small><sub>3</sub></small>Bi structure type. This cubic structure type is preserved in the solid solution of Li<small><sub>3</sub></small>As–Li<small><sub>2</sub></small>Se synthesized <em>via</em> mechanochemical ball milling. The solid solutions were investigated <em>via</em> X-ray powder diffraction, showing a linear dependency of the lattice parameter <em>a</em> on the mole fraction of the boundary phases Li<small><sub>3</sub></small>As and Li<small><sub>2</sub></small>Se, according to Vegard's law. Configurational entropy is generated by mixed anion lattice occupation between arsenide and selenide and therefore stabilizes the cubic structure of the solid solution. At elevated temperatures, the solid solution of Li<small><sub>3</sub></small>As–Li<small><sub>2</sub></small>Se reveals an exsolution process by forming the boundary phases Li<small><sub>3</sub></small>As and Li<small><sub>2</sub></small>Se, proving the metastable character of the system. Impedance spectroscopy was used to determine the lithium-ion conductivities in the Li<small><sub>3</sub></small>As–Li<small><sub>2</sub></small>Se system, showing significantly higher conductivity values (∼10<small><sup>−4</sup></small> to 10<small><sup>−6</sup></small> S cm<small><sup>−1</sup></small> at 50 °C) compared to the pure end members Li<small><sub>3</sub></small>As (∼10<small><sup>−7</sup></small> S cm<small><sup>−1</sup></small> at 50 °C) and Li<small><sub>2</sub></small>Se (∼10<small><sup>−7</sup></small> S cm<small><sup>−1</sup></small> at 175 °C).</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 2","pages":" 193-200"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00127c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanochemical generation of nitrogen-centred radicals for the formation of tertiary amines in polymers† 聚合物中形成叔胺的氮中心自由基的机械化学生成
RSC Mechanochemistry Pub Date : 2024-12-18 DOI: 10.1039/D4MR00099D
Sonja Storch, Davide Campagna, Simay Aydonat and Robert Göstl
{"title":"Mechanochemical generation of nitrogen-centred radicals for the formation of tertiary amines in polymers†","authors":"Sonja Storch, Davide Campagna, Simay Aydonat and Robert Göstl","doi":"10.1039/D4MR00099D","DOIUrl":"https://doi.org/10.1039/D4MR00099D","url":null,"abstract":"<p >Force-activated functional groups in polymers may inform the design of future smart materials in which mechanical events trigger productive chemistry. The availability of such mechanochemically active tools (mechanophores) is perpetually increasing, but the limited understanding of mechanochemical reactivity complicates the identification of new molecular motifs that render reactive groups accessible by force. Here, we expand the chemical scope of our previously reported carbamoyloxime mechanophore motif from latent secondary to tertiary amines by harnessing the reactivity of transient nitrogen-centred radicals formed in the mechanochemical reaction pathway. Carbamoyloximes are modified with an <em>N</em>-pentenyl substituent which undergoes a consecutive intramolecular 5-<em>exo-trig</em> ring-closing reaction with an aminyl radical generated upon force-induced homolytic scission of the mechanophore, thereby enabling the hitherto unexplored mechanochemical activation of latent tertiary amines. We therefore show that carbamoyloxime mechanophores are nitrogen-centred mechanoradical generators expanding the chemical space of polymer mechanochemistry.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 2","pages":" 240-245"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00099d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twin screw extrusion mechanochemical preparation of BiVO4 hybrid pigments for coloring and reinforcing of acrylonitrile-butadiene-styrene† 双螺杆挤出机械化学法制备BiVO4杂化颜料对丙烯腈-丁二烯-苯乙烯†着色补强
RSC Mechanochemistry Pub Date : 2024-12-14 DOI: 10.1039/D4MR00117F
Lei Wu, Bin Mu, Hao Yang, Zhaoli Wang, Yongfeng Zhu, Hui Dou and Aiqin Wang
{"title":"Twin screw extrusion mechanochemical preparation of BiVO4 hybrid pigments for coloring and reinforcing of acrylonitrile-butadiene-styrene†","authors":"Lei Wu, Bin Mu, Hao Yang, Zhaoli Wang, Yongfeng Zhu, Hui Dou and Aiqin Wang","doi":"10.1039/D4MR00117F","DOIUrl":"https://doi.org/10.1039/D4MR00117F","url":null,"abstract":"<p >The traditional solid or liquid-phase preparation process of clay mineral-based inorganic pigments inevitably involves complex experimental procedures and generation of large volumes of polluting wastewater. To conform to the concept of green chemistry, a cleaner twin screw extrusion followed by high-temperature crystallization technology was developed to prepare low-cost BiVO<small><sub>4</sub></small> hybrid pigments based on a natural mixed-dimensional attapulgite clay (MDAPT). It was revealed that the generated shear and extrusion forces during the twin-screw extrusion process effectively promoted the formation of the precursor with the assistance of the colloidal properties of MDAPT. After incorporation of 60 wt% MDAPT, the hybrid pigments obtained at 700 °C presented the best color performance (<em>L</em><small><sup>*</sup></small> = 74.76, <em>a</em><small><sup>*</sup></small> = 4.24, <em>b</em><small><sup>*</sup></small> = 80.84). In view of the synergistic effect of each component, the hybrid pigments served as functional nanofillers for coloring and reinforcing of acrylonitrile-butadiene-styrene (ABS) after being modified with KH-570. At the optimum added amount of 2.75 wt% of hybrid pigments, the tensile strength and bending strength of yellow ABS composites increased by 36.87% and 25.96% compared with that of pure ABS, respectively. Furthermore, it was worth mentioning that incorporation of hybrid pigments also contributed to improving the UV-aging resistance of ABS due to the better absorption and reflection performances of hybrid pigments toward UV and visible light. Therefore, this study is expected to provide a feasible strategy for continuous mechanochemical preparation of low-cost BiVO<small><sub>4</sub></small> hybrid pigments for the coloring of ABS with excellent mechanical properties and aging-resistance.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 2","pages":" 297-306"},"PeriodicalIF":0.0,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00117f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combined hydrothermal and mechanochemical control of structural modifications of zirconium dioxide for catalytic applications† 水热与机械化学相结合的二氧化锆催化结构修饰研究[j]
RSC Mechanochemistry Pub Date : 2024-12-11 DOI: 10.1039/D4MR00094C
V. Sydorchuk, S. Levytska, O. Kiziun, L. Vasylechko, K. Simkovicova, S. Valtera, B. E. Billinghurts, S. Vajda and J. E. Olszowka
{"title":"Combined hydrothermal and mechanochemical control of structural modifications of zirconium dioxide for catalytic applications†","authors":"V. Sydorchuk, S. Levytska, O. Kiziun, L. Vasylechko, K. Simkovicova, S. Valtera, B. E. Billinghurts, S. Vajda and J. E. Olszowka","doi":"10.1039/D4MR00094C","DOIUrl":"https://doi.org/10.1039/D4MR00094C","url":null,"abstract":"<p >The influence of hydrothermal treatment (HTT) and subsequent mechanochemical treatment (MChT, milling) on the porous and crystalline structure of precipitated zirconium dioxide was studied. It has been established that HTT at 300 °C promotes the transformation of amorphous ZrO<small><sub>2</sub></small> into a pure monoclinic phase, as well as the formation of a uniform mesoporous structure which has higher thermal stability. Soft dry milling (300 rpm, 0.5–1 h) of hydrothermally modified monoclinic ZrO<small><sub>2</sub></small> causes the introduction of defects into its structure without a noticeable change in the phase composition. The presence of defects is confirmed directly using UV-vis spectra and indirectly by the manifestation of photocatalytic activity of milled samples under visible irradiation. Importantly, it is found that after calcination of milled samples at 500 °C a high fraction of defects remains preserved which opens up the potential of using zirconium dioxide modified in this way as a catalyst or catalytic support with added specific properties offered by defects.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 2","pages":" 209-223"},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00094c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure as the driving force for mechanochemical reactions on the example of ion metathesis of alkali halides upon ball milling† 压力作为机械化学反应的驱动力——以球磨碱卤化物离子分解为例
RSC Mechanochemistry Pub Date : 2024-12-10 DOI: 10.1039/D4MR00104D
Wolfgang Schmidt, Pit Losch, Hilke Petersen, Martin Etter, Florian Baum, Jan Ternieden and Claudia Weidenthaler
{"title":"Pressure as the driving force for mechanochemical reactions on the example of ion metathesis of alkali halides upon ball milling†","authors":"Wolfgang Schmidt, Pit Losch, Hilke Petersen, Martin Etter, Florian Baum, Jan Ternieden and Claudia Weidenthaler","doi":"10.1039/D4MR00104D","DOIUrl":"https://doi.org/10.1039/D4MR00104D","url":null,"abstract":"<p >We report an <em>in situ</em> X-ray diffraction study of the mechanochemical ion metathesis between sodium iodide (NaI) and potassium chloride (KCl) to form sodium chloride (NaCl) and potassium iodide (KI) upon ball milling in a shaker mill. The data permit insights into the fundamental processes occurring during mechanochemistry. The reaction proceeds in incremental steps upon ball impact and consequently follows pseudo-zero order kinetics after an induction period needed for mixing and reduction of the sizes of the salt crystals. The total energy input required for full conversion is a constant value irrespective of the shaking frequency. Different shaking frequencies imply different average kinetic energies of the milling balls and thus different energy transfer per impact. The time for the total energy transfer to the powder thus varies as a function of the kinetic energy of the balls and number of impacts. At lower shaking frequency, <em>i.e.</em>, at lower kinetic energy of the balls and a lower impact rate, the time required for full conversion is simply longer. The data reported provide strong evidence that pressure generated by the impact of milling balls is the driving force for the metathesis reaction rather than a temperature increase. The observed pseudo-zero order kinetics complies well with periodic pressure pulses driving the salt metathesis reaction.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 2","pages":" 273-284"},"PeriodicalIF":0.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00104d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信