Ultrasound-based mechanochemical generation of reactive oxygen species from nanoparticle-conjugated amyloid fibrils†

Soumi Das, Jayanta Dolai, Buddhadev Mukherjee, Anupam Maity and Nikhil R. Jana
{"title":"Ultrasound-based mechanochemical generation of reactive oxygen species from nanoparticle-conjugated amyloid fibrils†","authors":"Soumi Das, Jayanta Dolai, Buddhadev Mukherjee, Anupam Maity and Nikhil R. Jana","doi":"10.1039/D5MR00041F","DOIUrl":null,"url":null,"abstract":"<p >Piezoelectric biomaterials have diverse potential biomedical applications <em>via</em> ultrasound-based wireless mechanochemical reaction at a remote area of the body/medical device. However, most biomaterials have weak piezoelectric properties compared to chemically designed piezoelectric materials. In the current approach, piezoelectric properties of certain biomaterials are enhanced by transforming them into anisotropic fibril/sheet-like morphology. Here, we demonstrate that the piezoelectric property of amyloid fibrils can be enhanced by 2 times <em>via</em> conjugation with nanoparticles and this can enhance the ultrasound-based mechanochemical production of reactive oxygen species by 4 times. In particular, we have synthesized nanoparticle-conjugated lysozyme fibrils with a piezoelectric constant value as high as 82 pm V<small><sup>−1</sup></small>. Thin films derived from these materials can generate periodic voltage/current pulses under the exposure of medical-grade ultrasound that can reach up to 1 V/15 nA. A colloidal dispersion of these materials generates superoxide/hydroxyl radicals <em>via</em> ultrasound-based mechanochemical reaction and degrade a dye. This strategy can be adapted to improve the mechanochemical reaction performance of weakly piezoelectric materials.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 4","pages":" 556-562"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d5mr00041f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mr/d5mr00041f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric biomaterials have diverse potential biomedical applications via ultrasound-based wireless mechanochemical reaction at a remote area of the body/medical device. However, most biomaterials have weak piezoelectric properties compared to chemically designed piezoelectric materials. In the current approach, piezoelectric properties of certain biomaterials are enhanced by transforming them into anisotropic fibril/sheet-like morphology. Here, we demonstrate that the piezoelectric property of amyloid fibrils can be enhanced by 2 times via conjugation with nanoparticles and this can enhance the ultrasound-based mechanochemical production of reactive oxygen species by 4 times. In particular, we have synthesized nanoparticle-conjugated lysozyme fibrils with a piezoelectric constant value as high as 82 pm V−1. Thin films derived from these materials can generate periodic voltage/current pulses under the exposure of medical-grade ultrasound that can reach up to 1 V/15 nA. A colloidal dispersion of these materials generates superoxide/hydroxyl radicals via ultrasound-based mechanochemical reaction and degrade a dye. This strategy can be adapted to improve the mechanochemical reaction performance of weakly piezoelectric materials.

Abstract Image

纳米粒子共轭淀粉样原纤维的超声机械化学生成活性氧
压电生物材料具有多种潜在的生物医学应用,通过超声波在身体/医疗设备的偏远区域进行无线机械化学反应。然而,与化学设计的压电材料相比,大多数生物材料具有较弱的压电性能。在目前的方法中,通过将某些生物材料转化为各向异性的纤维/片状形态来增强其压电性能。在这里,我们证明了淀粉样蛋白原纤维的压电特性可以通过与纳米颗粒的共轭而提高2倍,这可以使基于超声的机械化学生产的活性氧提高4倍。特别是,我们已经合成了纳米颗粒共轭溶菌酶原纤维,其压电常数值高达82 pm V−1。这些材料制成的薄膜在医用级超声照射下可产生周期性电压/电流脉冲,最高可达1 V/15 nA。这些材料的胶体分散通过超声波机械化学反应产生超氧化物/羟基自由基并降解染料。该策略可用于改善弱压电材料的力学化学反应性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信