{"title":"Investigating the impact of foundry by-product sand as an activator on workability improvement and strength development in alkali-activated blast furnace slag mortar","authors":"Chi-Yi Hua, Chia-Jung Tsai, Wen-Shinn Shyu, Leila Fazeldehkordi","doi":"10.1016/j.rinma.2024.100632","DOIUrl":"10.1016/j.rinma.2024.100632","url":null,"abstract":"<div><div>The substitution of alkali-activated furnace slag significantly reduces the necessity of cement manufacture and mitigates the continuous growth of carbon emissions. In addition, it shows superior mechanical properties compared to traditional concrete materials. However, rapid setting issues hinder its widespread applications. This study investigated the innovative use of zero-carbon waste sodium silicate-bonded sand as a substitute for the fine aggregate and sodium silicate in traditional alkali-activated blast furnace slag mortar. The primary objective is to analyze the impact of waste sodium silicate-bonded sand on the workability and mechanical properties of the mortar. The key properties such as flowability, setting time, temperature measurement, compressive strength, and microstructural were analyzed to determine the improvement in workability and the strength development of alkali-activated blast furnace slag mortar resulting from the use of waste sodium silicate-bonded sand. The research showed the integration of waste sodium silicate-bonded sand results in an eco-friendly and cost-effective material, which addresses limitations in traditional activated blast furnace slag mortars. The finding revealed that substituting fine aggregate and sodium silicate with waste sodium silicate-bonded sand significantly improved the mechanical and workability properties of alkali-activated mortars. Notably, the compressive strength of mortars incorporating waste sodium silicate-bonded sand exceeded that of traditional Portland cement and effectively mitigated rapid setting issues. In addition, this approach led to an environmentally friendly mortar with satisfactory workability. The research emphasizes the practical benefits of utilizing waste sodium silicate-bonded sand and offers new insights into its effects on mortar performance. This has provided more details for future exploration and refinement in the field of alkali-activated materials.</div></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"24 ","pages":"Article 100632"},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Ullah , N. Javaid , A. Rafiq , A. Samreen , S. Riaz , S. Naseem
{"title":"Outstanding performance of Co-doped ZnS nanoparticles used as nanocatalyst for synthetic dye degradation","authors":"A. Ullah , N. Javaid , A. Rafiq , A. Samreen , S. Riaz , S. Naseem","doi":"10.1016/j.rinma.2024.100628","DOIUrl":"10.1016/j.rinma.2024.100628","url":null,"abstract":"<div><div>In this work, fabrication of pure and cobalt (Co) doped zinc sulfide (ZnS) nanoparticles were carried out via facile co-precipitation technique using thioglycolic acid as a surfactant. The synthesized nano powders were employed to characterize using various techniques like X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and UV–Vis spectroscopy, to elucidate the alterations in the structure and morphology of nanomaterials. The XRD analysis revealed wurtzite phase of fabricated nanoparticles. Inclusion of Co dopants failed to modify the lattice structure of host material. Analysis of UV–Vis spectroscopy indicates intensive absorption in the visible region upon doping. FTIR spectroscopy was employed to identify functional groups affiliated with molecular vibrations. The photoactivity and kinetics of photo-products were evaluated by monitoring degradation of methylene blue (MB) by solar irradiation. Photodecomposition of MB was significantly increased when Co doped ZnS was employed relative to pristine ZnS. This novel technique of doped ZnS nanoparticles provide an effectual and sustainable route for treatment of wastewater.</div></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"24 ","pages":"Article 100628"},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing weld strength and microstructure in CP-titanium and 304 stainless steel friction welds with chromium interlayer","authors":"Mohammad Mostafa Sheykhi, Mohammad Ali Mostafaei","doi":"10.1016/j.rinma.2024.100627","DOIUrl":"10.1016/j.rinma.2024.100627","url":null,"abstract":"<div><div>This study investigates the effect of a Cr-interlayer on the hardness and friction-welded joint strength between CP-titanium and 304 stainless steel. Rotary friction welding, with its adjustable parameters such as upset pressure, is the preferred method for this dissimilar joint. Due to the difference between these two base metals, a metallic interlayer like chromium, is crucial for controlling the formation of intermetallic compounds (IMCs). Welding was conducted at three different upset pressures, both with and without the Cr-interlayer. Tensile and microhardness tests were performed, complemented by phase analysis and microstructural characterization using XRD and SEM. Our findings reveal that employing a chromium layer and higher upset pressures enhances strength while reducing the presence of brittle IMCs in the welds. At the CP-titanium side, dynamic recrystallization occurs due to increased heat generation at the interface and strain occurred by materials flow, facilitating IMC formation, especially evident at 250 MPa upset pressure. Interestingly, relatively higher strength at 150 MPa is attributed to the absence of IMCs. Conversely, higher strength results at 350 MPa due to from the flow of softened material, effectively purging IMCs from the weld zone. Notably, both β-titanium and chromium-based IMCs form in the presence of the chromium interlayer, resulting in decreased joint hardness and increased overall ductility. In conclusion, our study's findings contribute to bridging the gap between theoretical strength and practical application, significantly advancing joint performance.</div></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"24 ","pages":"Article 100627"},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bifunctional catalysis on water splitting reaction by graphitic carbon supported NiO, NiS and NiSe nanoparticles","authors":"Mousumi Mondal , Anirban Ghosh , Sujit Kumar Ghosh , Swapan Kumar Bhattacharya","doi":"10.1016/j.rinma.2024.100625","DOIUrl":"10.1016/j.rinma.2024.100625","url":null,"abstract":"<div><div>In this work, we have synthesized NiO, NiS and NiSe nanoparticles by similar hydrothermal method and the electrocatalytic activities of the graphite carbon-supported synthesized materials have been compared in reference to hydrogen and oxygen evolution reactions (HER and OER) in aqueous acidic and alkaline media respectively. The as-synthesized nanoparticles have been characterized by using powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopic studies. The best electrocatalyst, NiSe provides a current density of 10 mA cm<sup>−2</sup> at 259 mV overpotential for OER in 1.0 M KOH, which is superior to that of the state-of-the-art catalyst RuO<sub>2</sub> in the same environment. For HER the best electrocatalyst, NiSe provides a current density of 10 mA cm<sup>−2</sup> at 49.5 mV overpotential in 0.5 M H<sub>2</sub>SO<sub>4</sub>, which is again superior to Pt wire electrode. The order of electrocatalytic activity in both HER and OER has been found to follow the sequence: NiSe > NiS > NiO under the same electrochemical conditions, as have been evident from cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopic studies. While the electrochemical surface area is increased by 16.4 % and 37.3 % on changing the electrocatalyst from NiO to NiS and NiSe respectively, the chronoamperometric current densities are increased by 429 % and 635 % at 0.8 V for OER and 548 % and 9733 % at −0.4V for HER on changing the same materials. Thus, the enhancement in catalytic activity hangs mainly on the material characteristics besides the morphological improvement.</div></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"24 ","pages":"Article 100625"},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancing superconductivity research: Insights from numerical simulations of potassium fullerenide-60 and gold and with Ginzburg-Landau theory","authors":"Mohamad Hasson , Mohamad Asem Alkourdi , Marwan Al-Raeei","doi":"10.1016/j.rinma.2024.100626","DOIUrl":"10.1016/j.rinma.2024.100626","url":null,"abstract":"<div><div>There are many types of superconductors, including gold ormus and some fullerene derivatives. Gold can become a superconductor at extremely low temperatures (<1 K), allowing it to conduct electricity without resistance. While not as commonly used as materials like niobium or lead, gold superconductors are valuable for research and development in superconductivity. Fullerene derivatives like potassium fullerenide-60 also exhibit high superconductivity. Limited studies have been conducted on both gold ormus and superconducting fullerene derivatives. Our study of numerical simulations of the Ginzburg-Landau theory in superconductors for gold ormus and potassium fullerenide-60 has yielded important results. We have successfully simulated class-I and class-II superconducting gold ormus, as well as potassium fullerenide-60, using the Runge-Kutta fourth order method. Our analysis demonstrates the convergence of our simulation outcomes and highlights the importance of considering truncation error and selecting appropriate step sizes for accurate results. The periodic factor of penetration (PFP) for each superconductor has been determined, with class-I superconducting gold having a PFP of 250 nm, class-II superconducting gold having a PFP of 566.2 nm, and potassium fullerenide-60 having a PFP of 1.374 nm. Additionally, our study reveals the relationship between the periodic penetration factor and the length of the penetration depth, showing that the PFP reaches a minimum value at a penetration depth length of 130 nm. Overall, our findings contribute to a better understanding of superconductivity in gold ormus and potassium fullerenide-60, emphasizing the importance of accurate numerical simulations for studying complex physical phenomena. Our study confirmed the accuracy of the Runge-Kutta fourth-order method in simulating superconductors. By examining the PFP for various superconducting materials, we identified trends in penetration depth, shedding light on superconductivity. Our simulations give valuable insights for advancing research in this field, with the Runge-Kutta fourth-order method striking a balance between accuracy and efficiency. Careful parameter adjustment ensures reliable simulations and contributes to progress in superconductivity research.</div></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"24 ","pages":"Article 100626"},"PeriodicalIF":0.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green synthesis of undoped and yttrium, bismuth co-doped titanium dioxide nanoparticles using Bryophyllum pinnatum for photocatalytic application","authors":"Md Sharier Parvez , Ashikur Rahman , A.K.M. Ahsanul Habib , S.M. Nasim Rokon","doi":"10.1016/j.rinma.2024.100629","DOIUrl":"10.1016/j.rinma.2024.100629","url":null,"abstract":"<div><div>In this research, a non-toxic, inexpensive, and environment-friendly green synthesis route was investigated to synthesize undoped and Y, Bi co-doped TiO<sub>2</sub> nanoparticles by using <em>Bryophyllum pinnatum</em> leaf extract. Precursor material titanium isopropoxide (TTIP) was utilized for both undoped and co-doped TiO<sub>2</sub> and Yttrium and Bismuth were added to 1, 2, and 3 percent as co-dopants. The obtained undoped and Y, Bi co-doped TiO<sub>2</sub> nanoparticles were characterized by various analytical techniques, which include X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and UV–Visible spectroscopy for the evaluation of the structural, morphological, and photocatalytic activity. Anatase phase formation was observed from the XRD analysis for both undoped and Y, Bi co-doped TiO<sub>2</sub> nanoparticles. The average particle size for undoped TiO<sub>2</sub> nanoparticles was found to be 15.92 nm which raised to 21.70 nm for 3 % co-doping. UV–Vis Spectroscopy analysis revealed a reduction on band gap energy (E<sub>g</sub>) for Y, Bi co-doped TiO<sub>2</sub> nanoparticles. Methylene blue (MB) photodegradation demonstrates co-doping with Y, Bi significantly increases the photocatalytic activity. Overall, green synthesis using <em>Bryophyllum pinnatum</em> was found to be an economical method to fabricate TiO<sub>2</sub> NPs that shows great improvement in photo-degradation characteristics.</div></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"24 ","pages":"Article 100629"},"PeriodicalIF":0.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photocatalytic performance of CuO NPs: An experimental approach for process parameter optimization for Rh B dye","authors":"Hridoy Saha , Ankita Dastider , Md Jannatul Ferdous Anik , Samiya Rahman Mim , Sovendo Talapatra , Utsha Das , Moniruzzaman Jamal , Md Muktadir Billah","doi":"10.1016/j.rinma.2024.100614","DOIUrl":"10.1016/j.rinma.2024.100614","url":null,"abstract":"<div><p>Optimization of process parameters for photocatalytic activity measurement of CuO nanoparticles (NPs) was the focus of this study. CuO NPs were prepared following chemical co-precipitation method and characterized using X-ray diffraction (XRD), ultraviolet visible (UV–vis) spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FTIR). Subsequent studies concentrated on optimizing pH of Rhodamine B (Rh B) dye, catalyst doses, and concentration of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) for effective photocatalytic degradation. This optimization process was intended to properly investigate the photocatalytic activity of CuO NPs using Rh B dye (5 ppm), a frequently encountered organic pollutant. After 180 min of UV irradiation at optimized condition (pH 10, 0.3125 mg/mL NPs, 9000 ppm H<sub>2</sub>O<sub>2</sub>) a degradation rate of 60 percent was recorded. These findings maximized the degradation efficiency of CuO NPs to exploit as a potential photocatalyst.</p></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"24 ","pages":"Article 100614"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590048X24000888/pdfft?md5=0c7612cbbfb3820b9d448c07d6fe941d&pid=1-s2.0-S2590048X24000888-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aims and Scope","authors":"","doi":"10.1016/S2590-048X(24)00097-9","DOIUrl":"10.1016/S2590-048X(24)00097-9","url":null,"abstract":"","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"23 ","pages":"Article 100623"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590048X24000979/pdfft?md5=44f680f0e008184ae524d3eafce9e779&pid=1-s2.0-S2590048X24000979-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W.B. Elsharkawy , H. Elzanaty , Z.M. Elqahtani , T. Fahmy , A. Sarhan
{"title":"Investigation of thermal, optical properties, AC conductivity and broadband dielectric spectroscopy of poly(ethyl methacrylate)/poly(vinyl chloride) polymer blend","authors":"W.B. Elsharkawy , H. Elzanaty , Z.M. Elqahtani , T. Fahmy , A. Sarhan","doi":"10.1016/j.rinma.2024.100621","DOIUrl":"10.1016/j.rinma.2024.100621","url":null,"abstract":"<div><p>This work reports the structural, thermal, optical and electrical properties of PEMA, PVC and their polyblends. These properties are investigated by FTIR, TGA, UV/Vis and broadband dielectric spectroscopy. FTIR spectra showed that the characteristic bands of PEMA and PVC are affected by blending and displayed red and blue shifts confirming that an intermolecular interaction between PEMA and PVC is occurred. Thermal degradation kinetics of PEMA, PVC and its polyblend samples is investigated in details and the thermal properties of each decomposition stage are estimated. UV measurements analysis revealed that Urbach energy (<em>E</em><sub><em>U</em></sub>) is increased while optical bandgap decreased upon increasing the PVC content. The indirect and direct band gap (<em>E</em><sub><em>ig</em></sub>/<em>E</em><sub><em>dg</em></sub>) values are decreased from (3.95/4.21) to (3.10/3.92) eV. Also, upon increasing the content of PVC, the lattice dielectric constant (<em>ε</em><sub><em>L</em></sub>) is increased from 2.71 to 7.83. Wemple-DiDomenico model is applied for investigating the refractive index dispersion and to calculate the oscillator and dispersion energies. It is observed that the linear/nonlinear parameters are increased nonlinearly with increasing the PVC content. χ<sup>(1)</sup>, χ<sup>(3)</sup> and n<sub>2</sub> values are found to increase from 0.104, 0.213 × 10<sup>−13</sup> and 4.01 × 10<sup>−12</sup> to 0.363, 31.26 × 10<sup>−13</sup> and 5.33 × 10<sup>−12</sup>. These results make PEMA/PVC polyblend strong candidates for use in the development and design of advanced optoelectronic devices. AC conductivity (σ<sub>ac</sub>) and dielectric measurements are carried out at various temperatures in wide frequency range. Jonscher power law is applied and showed that the predominant conduction mechanism in our samples is overlapping large-polaron tunneling (OLPT). The dielectric constant and electrical impedance are found to be frequency and temperature dependent. The investigation of the electric modulus (M*) revealed that M′ is increased non-linearly with increasing the frequency, while M″ spectra displayed two different modes of relaxation. The interfacial polarization (IP) is observed in low frequency region, while, dipolar relaxation is detected in high frequency region.</p></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"23 ","pages":"Article 100621"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590048X24000955/pdfft?md5=765903067484be172478bdcff3b01a78&pid=1-s2.0-S2590048X24000955-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical and absorption properties of carbon-basalt and glass fiber reinforced composites: A comprehensive study with implications for advanced manufacturing technology","authors":"Md Tanzim Rafat, Tanjim Zahin Shuchi, Faizur Rahman Evan, Md Anisur Rahman","doi":"10.1016/j.rinma.2024.100615","DOIUrl":"10.1016/j.rinma.2024.100615","url":null,"abstract":"<div><p>In this research, a combination of hybrid and non-hybrid composite materials were tested for their mechanical properties and water absorption rates. The study focused on composites produced through hand-layup techniques, examining their void percentage, morphology, and elemental composition. Specifically, three different stacking sequences of hybrid composites were compared with three non-hybrid composites of equal thickness. Combining carbon and glass allows the composites to balance flexural (367 MPa, 23 GPa) and tensile (440 MPa, 5.7 GPa) strength and modulus, all while remaining cost-effective and easily accessible. The glass fiber-based composites exhibited exceptional impact (27 J/cm<sup>2</sup>) strength due to their interfacial solid bonding. Additionally, the study found that basalt and carbon-basalt composites had varying degrees of water absorption when exposed to seawater and river water. SEM and EDS Mapping analyses were conducted to understand better fibrous and granular composites' mechanical properties and water absorption behaviors. These analyses provided valuable insights and a comprehensive knowledge of composite properties. Ultimately, the study recommends using hybrid composite materials for specific applications based on desired flexural tensile strength, impact strength, or water absorption characteristics.</p></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"23 ","pages":"Article 100615"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590048X2400089X/pdfft?md5=e4a0abfb594e2d4564007066fafcf939&pid=1-s2.0-S2590048X2400089X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}