Next Energy最新文献

筛选
英文 中文
Editorial: Aqueous rechargeable batteries: Current status and what’s next 社论:水性可充电电池:现状与未来
Next Energy Pub Date : 2024-05-07 DOI: 10.1016/j.nxener.2024.100129
Hong Jin Fan , Chunyi Zhi , Jiang Zhou , Dongliang Chao
{"title":"Editorial: Aqueous rechargeable batteries: Current status and what’s next","authors":"Hong Jin Fan , Chunyi Zhi , Jiang Zhou , Dongliang Chao","doi":"10.1016/j.nxener.2024.100129","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100129","url":null,"abstract":"","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000346/pdfft?md5=af41ef7d3ada56dc84b69bd52af75458&pid=1-s2.0-S2949821X24000346-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic coupling of optical field and built-in electric field for lithium-sulfur batteries with high cyclabilities and energy densities 高循环能力和高能量密度锂硫电池的光场和内置电场协同耦合效应
Next Energy Pub Date : 2024-05-06 DOI: 10.1016/j.nxener.2024.100134
Yu-Hao Liu , Cheng-Ye Yang , Chun-Yu Yu , Jia-Cheng Yu , Mei-Chen Han , Jia-Hao Zhang , Yu Yu , Zhong-Zhen Yu , Jin Qu
{"title":"Synergistic coupling of optical field and built-in electric field for lithium-sulfur batteries with high cyclabilities and energy densities","authors":"Yu-Hao Liu ,&nbsp;Cheng-Ye Yang ,&nbsp;Chun-Yu Yu ,&nbsp;Jia-Cheng Yu ,&nbsp;Mei-Chen Han ,&nbsp;Jia-Hao Zhang ,&nbsp;Yu Yu ,&nbsp;Zhong-Zhen Yu ,&nbsp;Jin Qu","doi":"10.1016/j.nxener.2024.100134","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100134","url":null,"abstract":"<div><p>Photo-assisted lithium sulfur batteries (PA-LSBs) provide vital and sustainable protocols for promoting sulfur redox reactions via powerful photoinduced effects. However, precise control of the stepwise adsorption, diffusion and photocatalytic conversion of polysulfides at the surface of photocatalysts is required to accelerate the photo-assisted process. Herein, optical field and built-in electric field synergistically-assisted LSBs are developed with a p-n junction of Co<sub>3</sub>O<sub>4</sub>-TiO<sub>2</sub> on the carbon cloth, possessing a spontaneously generated built-in electric field and a well-matched energy band structure with sulfur redox reactions. Under light irradiation, the directional migration of soluble polysulfides and the space separation of photogenerated carriers are achieved with the synergistical coupling of the optical field and built-in electric field to precisely regulate the selective deposition of Li<sub>2</sub>S and inhibit the shuttle effect via an effective photocatalytic-promoted process, leading to a maximum capacity of 1087 mAh g<sup>−1</sup> at 2 C and a low capacity attenuation of 0.068% per cycle at 5 C. A high areal capacity of 9.6 mAh cm<sup>−2</sup> and a great potential photo-charge process can be realized with light irradiation. Furthermore, the stability of lithium metal anodes is improved accordingly. This work demonstrates a new insight to develop high-performance LSBs with a multifield synergistical coupling protocol.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000395/pdfft?md5=442c262d5b1299f463daeb55bd6a2640&pid=1-s2.0-S2949821X24000395-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140843217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable Slurry-Casting Fabrication of Ultrathin, Flexible, and High-Voltage Halide-based Composite Solid-State Electrolytes for Lithium Metal Batteries 为金属锂电池制造超薄、柔性和高电压卤化物基复合固态电解质的可扩展浆状铸造技术
Next Energy Pub Date : 2024-05-02 DOI: 10.1016/j.nxener.2024.100120
Junjie Chen , Yu Wang , Yanke Lin , Jianbo Xu , Yiju Li , Tianshou Zhao
{"title":"Scalable Slurry-Casting Fabrication of Ultrathin, Flexible, and High-Voltage Halide-based Composite Solid-State Electrolytes for Lithium Metal Batteries","authors":"Junjie Chen ,&nbsp;Yu Wang ,&nbsp;Yanke Lin ,&nbsp;Jianbo Xu ,&nbsp;Yiju Li ,&nbsp;Tianshou Zhao","doi":"10.1016/j.nxener.2024.100120","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100120","url":null,"abstract":"<div><p>Flexible composite polymer electrolytes with high ionic conductivity, high voltage, and small thickness are critical for achieving scalable fabrication of high-energy-density solid-state lithium metal batteries (SSLMBs). Owing to the intrinsically lower density (2.5–3.0 g cm<sup>−3</sup>) than that of oxides (&gt;4.0 g cm<sup>−3</sup>), high ionic conductivity (∼10<sup>−3</sup> S cm<sup>−1</sup>), high modulus, and high voltage, halides can be used as effective functional Li-ion-conductive fillers to construct thin, lightweight, and high-performance composite polymer electrolytes while achieving high-energy-density of SSLMBs. Nevertheless, the chemical vulnerability of halide solid electrolyte materials to common polar solvents restricts the scalable slurry-casting fabrication of halide-based composite polymer electrolytes for practical SSLMBs. To this end, a bi-functional low-polarity solvent, dimethyl carbonate, is screened to render halides, which are usually slurry-incompatible, amenable to scalable slurry fabrication. As a result, an ultrathin (10 µm) and flexible halide-incorporated composite electrolyte with a high electrochemical window up to 4.8 V vs. Li<sup>+</sup>/Li, high thermal stability, and desirable self-extinguishing ability is developed. Benefiting from the multiple Li-ion transport mechanisms enabled by the interaction between fillers, salts, and polymers, the obtained composite polymer electrolyte can achieve a high ionic conductivity of 0.325 mS cm<sup>–1</sup> at 25 °C. The assembled solid-state Li|LiFePO<sub>4</sub> cell based on the halide-based composite electrolyte achieves a high capacity of 153 mAh g<sup>−1</sup> at 0.2 C with a capacity retention of 98% after 175 cycles, and the Li|LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> cell can stably cycle at a cut-off voltage of 4.3 V and achieve a high capacity of 160 mAh g<sup>−1</sup> at 0.2 C with a capacity retention of 89% after 170 cycles. This work provides an effective strategy for large-scale manufacturing of ultrathin and flexible halide-based composite electrolytes for high-performance SSLMBs.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000255/pdfft?md5=e34e6d12110e446a895aae8c7fa55d73&pid=1-s2.0-S2949821X24000255-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140823839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A lithiated zeolite-based protective layer to boost the cycle performance of lithium−oxygen batteries via redox mediator sieving 基于锂化沸石的保护层可通过氧化还原介质筛分提高锂氧电池的循环性能
Next Energy Pub Date : 2024-04-30 DOI: 10.1016/j.nxener.2024.100135
Huiping Wu , Zhaohan Shen , Wei Yu , Xinbin Wu , Shundong Guan , Yu-Hsien Wu , Kaihua Wen , Haocheng Yuan , Ying Liang , Hirotomo Nishihara , Ce-Wen Nan , Liangliang Li
{"title":"A lithiated zeolite-based protective layer to boost the cycle performance of lithium−oxygen batteries via redox mediator sieving","authors":"Huiping Wu ,&nbsp;Zhaohan Shen ,&nbsp;Wei Yu ,&nbsp;Xinbin Wu ,&nbsp;Shundong Guan ,&nbsp;Yu-Hsien Wu ,&nbsp;Kaihua Wen ,&nbsp;Haocheng Yuan ,&nbsp;Ying Liang ,&nbsp;Hirotomo Nishihara ,&nbsp;Ce-Wen Nan ,&nbsp;Liangliang Li","doi":"10.1016/j.nxener.2024.100135","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100135","url":null,"abstract":"<div><p>Lithium–oxygen (Li–O<sub>2</sub>) batteries with ultra-high theoretical specific energy (3500 Wh kg<sup>−1</sup>) have attracted significant attention, but the sluggish electrochemical processes of discharge product Li<sub>2</sub>O<sub>2</sub> lead to poor cycling stability. Redox mediators (RMs) as soluble catalysts are widely used to assist with the electrochemical formation/decomposition of Li<sub>2</sub>O<sub>2</sub>. However, the shuttle effect of RMs causes severe deterioration of both RMs and Li metal anodes. Herein, for the first time we synthesize a lithiated zeolite-based protective layer on Li anodes to mitigate the shuttle effect of 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) in Li–O<sub>2</sub> batteries. The protective layer successfully blocks the migration of TEMPO toward the Li anode owing to the angstrom-level aperture size of lithiated zeolite. Due to the excellent redox-mediator-sieving capability of the protective layer, the cycle life of the Li−O<sub>2</sub> batteries is significantly prolonged more than ten times at a current density of 250 mA g<sup>−1</sup> and a limited capacity of 500 mA h g<sup>−1</sup>. This work demonstrates that the lithiated zeolite-based protective layer capable of molecular sieving is a facile and scalable way to mitigate the shuttle effect of RMs in Li–O<sub>2</sub> batteries.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000401/pdfft?md5=9a1653c64ba968b2b32532803fcb9f81&pid=1-s2.0-S2949821X24000401-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140813290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evaluation and improvement for the energy performance of buildings: A case study 评估和改进建筑物的能效:案例研究
Next Energy Pub Date : 2024-04-26 DOI: 10.1016/j.nxener.2024.100126
Atilla G. Devecioğlu, Burhan Bilici, Vedat Oruç
{"title":"The evaluation and improvement for the energy performance of buildings: A case study","authors":"Atilla G. Devecioğlu,&nbsp;Burhan Bilici,&nbsp;Vedat Oruç","doi":"10.1016/j.nxener.2024.100126","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100126","url":null,"abstract":"<div><p>The aim of this study is to perform the thermal analysis of an existing building by a software, hence determine the possible improvements and energy savings. In this context, the existing model and two different improved models of a building are compared. The 1st case covers the existing situation of the building while the 2nd and 3rd cases are related to two improved cases for the building. The improvements are focused on heat insulation, infiltration and lighting system of the building. The results point out that 2nd and 3rd cases provide a reduction in electricity consumption by 15% compared to the 1st case. Similarly, annual natural gas consumption is decreased about by 76% and 90% in 2nd and 3rd cases, respectively in comparison with the 1st case. The total energy consumption by electricity and natural gas per unit area for 1st, 2nd and 3rd cases is also determined as 55.7, 35.7 and 33.1 kWh/m<sup>2</sup>, respectively. Moreover, annual CO<sub>2</sub> emission is ensured to reduce nearly by 23% in both 2nd and 3rd cases compared to 1st situation.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000310/pdfft?md5=e37f1b2db005100a1c2d695253e35a9e&pid=1-s2.0-S2949821X24000310-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140649300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical nitrate reduction to ammonia using copper-based electrocatalysts 使用铜基电催化剂电化学还原硝酸盐至氨
Next Energy Pub Date : 2024-04-25 DOI: 10.1016/j.nxener.2024.100125
Rong Zhang , Shaoce Zhang , Huilin Cui , Ying Guo , Nan Li , Chunyi Zhi
{"title":"Electrochemical nitrate reduction to ammonia using copper-based electrocatalysts","authors":"Rong Zhang ,&nbsp;Shaoce Zhang ,&nbsp;Huilin Cui ,&nbsp;Ying Guo ,&nbsp;Nan Li ,&nbsp;Chunyi Zhi","doi":"10.1016/j.nxener.2024.100125","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100125","url":null,"abstract":"<div><p>Ammonia (NH<sub>3</sub>) is an ideal green fuel with high energy density and plays an indispensable role in fertilizer production. Electrochemical reduction of nitrate (NO<sub>3</sub><sup>–</sup>), a toxic pollutant in groundwater, has shown promising as a viable approach to converting waste into valuable NH<sub>3</sub> under ambient conditions, offering an alternative to the energy-intensive Haber-Bosch process. Due to their high efficiency, copper (Cu)-based materials have shown great potential as electrocatalysts for the NO<sub>3</sub><sup>–</sup> reduction reaction (NO<sub>3</sub><sup>–</sup>RR) to NH<sub>3</sub>. In this review, we provide a comprehensive summary of the fundamental principles underlying nitrate reduction over Cu-based electrocatalysts and discuss various strategies to enhance the performance of NO<sub>3</sub><sup>–</sup> reduction, including facets, morphologies, size, surface functionalization, compositional engineering, and defect engineering. We also delve into the relationship between the electrocatalytic performance and structure characteristics of electrocatalysts and thoroughly examine the reaction mechanism involved in NO<sub>3</sub><sup>–</sup>RR. Furthermore, we highlight the existing challenges and prospective paths forward in this area of study. This review offers valuable insights and guidance for the strategic design and optimization of Cu-based electrocatalysts for NO<sub>3</sub><sup>–</sup>RR applications.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000309/pdfft?md5=fb7ac34b07334042e413e3da001a4520&pid=1-s2.0-S2949821X24000309-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140643603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The exploration of the internal homogeneities for a LiFePO4 pouch lithium-ion battery with a 3D electrochemical-thermal coupled model 利用三维电化学-热耦合模型探索磷酸铁锂袋式锂离子电池的内部均匀性
Next Energy Pub Date : 2024-04-24 DOI: 10.1016/j.nxener.2024.100127
Jianpeng Mi , Xiaolong Liu , Daiman Zhu , Longfei Chen , Yongli Li
{"title":"The exploration of the internal homogeneities for a LiFePO4 pouch lithium-ion battery with a 3D electrochemical-thermal coupled model","authors":"Jianpeng Mi ,&nbsp;Xiaolong Liu ,&nbsp;Daiman Zhu ,&nbsp;Longfei Chen ,&nbsp;Yongli Li","doi":"10.1016/j.nxener.2024.100127","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100127","url":null,"abstract":"<div><p>Along with the battery charge/discharge processes, the migration of the Li ions inevitably leads to an inhomogeneous distribution of the battery internal electrochemical and thermal characteristics, deteriorating the battery capacity and safety. In this work, the internal characteristics of a 20 Ah pouch LiFePO<sub>4</sub> lithium-ion battery have been investigated based on a 3D electrochemical-thermal coupled model. It is found that the reduction of the particle size for either the cathode or anode would increase the battery capacity. Moreover, with the modulation of the thickness of cathode (<em>L</em><sub>pos</sub>) and convective heat transfer coefficient (<em>h</em>), the homogeneity of solid lithium concentration and temperature has been optimized. A relatively smaller <em>L</em><sub>pos</sub> and an <em>h</em> higher than the critical value should be adopted. From the aspect of thermal distribution, as the discharge rate increases, the irreversible reaction heat always dominates, while the proportion of ohmic heat among the total heat increases, and the high temperature region always locates on the inner sides of the tabs. The methodology proposed in this work could be applied to pouch batteries with more repeated cell units and larger sizes.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000322/pdfft?md5=f61e4711aa66fc199c20330b8cc7ae48&pid=1-s2.0-S2949821X24000322-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140641245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking dendrite-free zinc metal anodes through anti-corrosive and Zn-ion-regulating interlayer 通过抗腐蚀和锌离子调节夹层实现无树枝状突起的锌金属阳极
Next Energy Pub Date : 2024-04-17 DOI: 10.1016/j.nxener.2024.100124
Xuzi Zhang , Jialiang Wang , Hanlin Wang , Han Huang , Hao Zhang , Ge Li
{"title":"Unlocking dendrite-free zinc metal anodes through anti-corrosive and Zn-ion-regulating interlayer","authors":"Xuzi Zhang ,&nbsp;Jialiang Wang ,&nbsp;Hanlin Wang ,&nbsp;Han Huang ,&nbsp;Hao Zhang ,&nbsp;Ge Li","doi":"10.1016/j.nxener.2024.100124","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100124","url":null,"abstract":"<div><p>Aqueous zinc-ion batteries (AZIBs) are a promising solution for large-scale energy storage due to their safety and cost-effectiveness. However, challenges like zinc dendrite growth and electrolyte corrosion hinder their practical use. Surface engineering methods have shown potential in stabilizing the zinc metal anode interface. In this study, we propose a successful approach by combining 2D g-C<sub>3</sub>N<sub>4</sub> nanosheets with 3D ZIF8 nanoparticles to form a g-C<sub>3</sub>N<sub>4</sub>@ZIF8 artificial interface. The 3D ZIF8 support on the 2D g-C<sub>3</sub>N<sub>4</sub> enables precise regulation of Zn<sup>2+</sup> flux and efficient charge transfer, leading to improved electrochemical performance. Density functional theory confirms ZIF8's superior adsorption energy compared to g-C<sub>3</sub>N<sub>4</sub>. Strategically anchoring 3D ZIF8 nanoparticles within 2D g-C<sub>3</sub>N<sub>4</sub> allows robust 3D diffusion of Zn<sup>2+</sup>, preventing dendrite formation and enabling dendrite-free Zn deposition. This structural design can enhance the performance of symmetric cells with an ultralong cycling lifespan of up to 6200 h at 0.25 mA cm<sup>−2</sup>/0.25 mA h cm<sup>−2</sup> and superior rate capability, even at 40 mA cm<sup>−2</sup>. When combined with a V<sub>2</sub>O<sub>5</sub> nanopaper cathode, our assembled AZIBs exhibit stable long-term performance. This research paves the way for more efficient and reliable AZIBs for large-scale energy storage.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000292/pdfft?md5=76179bbf082890d62d5029bbc4e0e21a&pid=1-s2.0-S2949821X24000292-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140604559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved electro-kinetics of new electrolyte composition for realizing high-performance zinc-bromine redox flow battery 改进新型电解质成分的电动力学,实现高性能锌溴氧化还原液流电池
Next Energy Pub Date : 2024-04-13 DOI: 10.1016/j.nxener.2024.100123
Yogapriya Vetriselvam , Gnana Sangeetha Ramachandran , Raghupandiyan Naresh , Karuppusamy Mariyappan , Ragupathy Pitchai , Mani Ulaganathan
{"title":"Improved electro-kinetics of new electrolyte composition for realizing high-performance zinc-bromine redox flow battery","authors":"Yogapriya Vetriselvam ,&nbsp;Gnana Sangeetha Ramachandran ,&nbsp;Raghupandiyan Naresh ,&nbsp;Karuppusamy Mariyappan ,&nbsp;Ragupathy Pitchai ,&nbsp;Mani Ulaganathan","doi":"10.1016/j.nxener.2024.100123","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100123","url":null,"abstract":"<div><p>Aqueous Redox Flow Batteries (ARFB) are the most prominent technology for large-scale energy storage applications. The energy density of the ARFBs is mainly determined by the electrolyte components, which highly influence the flow battery performance. In the present work, we acutely investigated the various electrolyte compositions and optimized the best electrolyte for realizing the high performance of Zn-Br<sub>2</sub> ARFBs. The electrode kinetics, such as rate constant, exchange current density, conductivity, and diffusion coefficient, were analyzed using electrochemical techniques, cyclic voltammetry, and electrochemical impedance analysis. It was observed that zinc bromide (ZnBr<sub>2</sub>) + perchloric acid (HClO<sub>4</sub>) + 1-Ethyl-1-methylmorpholinium bromide (MEM) + N-ethyl-N-methylpyrrolidinium bromide (MEP) and ZnBr<sub>2</sub> + zinc chloride (ZnCl<sub>2</sub>) + MEM + MEP electrolytes showed improved performance, where the redox kinetics of 2Br<sup>-</sup>/Br<sub>2</sub> redox couple is greatly enhanced. The presence of perchloric acid unlocks the capacity of full electro-oxidation of bromide (Br<sup>-</sup>) to bromine (Br<sub>2</sub>) as it involves 1e<sup>-</sup> per Br<sup>-,</sup> which would be highly beneficial to attain high energy density. Further, Zn-Br<sub>2</sub> RFB adopted with optimized electrolyte formulation ZnBr<sub>2</sub> + HClO<sub>4</sub> + MEM+ MEP shows a better round-trip efficiency and displays a stable long cycling performance over 200 cycles with an energy (EE) and coulombic efficiency (CE) of &gt; 68% and &gt; 92%, respectively.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000280/pdfft?md5=c4ed9ee3bb2f47c7b0538f42535048d4&pid=1-s2.0-S2949821X24000280-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140548065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective upcycling of NMC 111 to NMC 622 cathodes by hydrothermal relithiation and Ni-enriching annealing 通过水热再铁素体化和富镍退火,将 NMC 111 有效升级为 NMC 622 正极
Next Energy Pub Date : 2024-04-10 DOI: 10.1016/j.nxener.2024.100122
Krystal Davis , George P. Demopoulos
{"title":"Effective upcycling of NMC 111 to NMC 622 cathodes by hydrothermal relithiation and Ni-enriching annealing","authors":"Krystal Davis ,&nbsp;George P. Demopoulos","doi":"10.1016/j.nxener.2024.100122","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100122","url":null,"abstract":"<div><p>It is imperative that a sustainable approach to the recycling of lithium-ion batteries (LIBs)—in particular the spent NMC cathodes—which reach their end-of-life (EOL) is realized as 11 million metric tonnes are expected to reach EOL by 2030. The current recycling processes based on pyrometallurgy and hydrometallurgy are not fully sustainable options as they recover only the value metals. By contrast direct recycling that aims in regenerating EOL LIB cathodes without breaking down the active compound’s crystal structure offers the most sustainable option. In this paper the direct recycling of NMC cathodes is investigated in combination with their upcycling. Upcycling is going to be in growing demand since the first generation NMC 111 cathode chemistries evolve to higher energy/nickel-rich formulations. In this work, the baseline is established for direct recycling of low and high nickel NMC cathodes by analyzing the three key steps of chemical delithiation of pristine NMC cathode material, hydrothermal relithiation (4M LiOH for 4 h at 220 °C), and annealing (4 h at 850 °C) in order to set the ground for investigating the upcycling of NMC 111 to NMC 622. Upcycling is affected via the co-addition of pre-calculated excess NiSO<sub>4</sub> and Li<sub>2</sub>CO<sub>3</sub> salts during annealing, following the hydrothermal relithiation step. Use of NiSO<sub>4</sub> that is commonly used as p-CAM provides a lower cost alternative to Ni(OH)<sub>2</sub> as Ni source. Characterization revealed the upcycled material to have been endowed with the typical α-NaFeO<sub>2</sub> layered structure and have surface morphology and composition similar to pristine NMC material. The upcycled NMC 622 cathode yielded good cycling stability (91.5% retention after 100 cycles) and &gt;99% Coulombic efficiency albeit with certain polarization loss justifying further optimization studies.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000279/pdfft?md5=b0850f984b6873f71e19747d075dda28&pid=1-s2.0-S2949821X24000279-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信