Memories - Materials, Devices, Circuits and Systems最新文献

筛选
英文 中文
An energy-efficient 10T SRAM in-memory computing macro for artificial intelligence edge processor 一种用于人工智能边缘处理器的高效10T SRAM内存计算宏
Memories - Materials, Devices, Circuits and Systems Pub Date : 2023-10-01 DOI: 10.1016/j.memori.2023.100076
Anil Kumar Rajput, Manisha Pattanaik, Gaurav Kaushal
{"title":"An energy-efficient 10T SRAM in-memory computing macro for artificial intelligence edge processor","authors":"Anil Kumar Rajput,&nbsp;Manisha Pattanaik,&nbsp;Gaurav Kaushal","doi":"10.1016/j.memori.2023.100076","DOIUrl":"https://doi.org/10.1016/j.memori.2023.100076","url":null,"abstract":"<div><p>In-Memory Computing (IMC) is emerging as a new paradigm to address the von-Neumann bottleneck (VNB) in data-intensive applications. In this paper, an energy-efficient 10T SRAM-based IMC macro architecture is proposed to perform logic, arithmetic, and In-memory Dot Product (IMDP) operations. The average write margin and read margins of the proposed 10T SRAM are improved by 40% and 2.5%, respectively, compared to the 9T SRAM. The write energy and leakage power of the proposed 10T SRAM are reduced by 89% and 83.8%, respectively, with aproximatelly similar read energy compared to 9T SRAM. Additionally, a 4 Kb SRAM array based on 10T SRAM is implemented in 180-nm SCL technology to analyze the operation and performance of the proposed IMC macro architecture. The proposed IMC architecture achieves an energy efficiency of 5.3 TOPS/W for 1-bit logic, 4.1 TOPS/W for 1-bit addition, and 3.1 TOPS/W for IMDP operations at 1.8 V and 60 MHz. The area efficiency of 65.2% is achieved for a 136 × 32 array of proposed IMC macro architecture. Further, the proposed IMC macro is also tested for accelerating the IMDP operation of neural networks by importing linearity variation analysis in Tensorflow for image classification on MNIST and CIFAR datasets. According to Monte-Carlo simulations, the IMDP operation has a standard deviation of 0.07 percent in accumulation, equating to a classification accuracy of 97.02% on the MNIST dataset and 88.39% on the CIFAR dataset.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"5 ","pages":"Article 100076"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50193740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient common source sense amplifier for single ended SRAM 一种用于单端SRAM的高效共源读出放大器
Memories - Materials, Devices, Circuits and Systems Pub Date : 2023-10-01 DOI: 10.1016/j.memori.2023.100065
Jebamalar Leavline, Sugantha A.
{"title":"An efficient common source sense amplifier for single ended SRAM","authors":"Jebamalar Leavline,&nbsp;Sugantha A.","doi":"10.1016/j.memori.2023.100065","DOIUrl":"https://doi.org/10.1016/j.memori.2023.100065","url":null,"abstract":"<div><p>Sense amplifiers (SA) play a vital role in supporting the read performance of static random-access memory (SRAM). Single ended SRAM has attracted importance due to low leakage current and absence of time margin compared to differential SA. This paper proposes a common source sense amplifier (CSSA) for low power single ended SRAM for read operation. The sense amplifier performs dual task by charging the bit line during pre-charge phase and amplifying the bit line during evaluation phase. The proposed CSSA shows good improvement in sensing time and power at higher number of cells per bit line (CpBL). The proposed CSSA exhibits 53%, 48%, 24%, 23%, and 41% lower sensing time for 256 CpBL and 52%, 51%, 50%, 37%, and 47% lesser power consumption than the conventional domino sensing scheme (DSS), AC coupled sense amplifier (ACSA), non-strobed regenerative sense amplifier (NSRSA), switching PMOS sense amplifier (SPSA) and trip point bit line pre-charge sensing scheme (TBPSS). The proposed CSSA occupies 18%, 25%, 53%, 61%, and 37% lesser area compared to DSS, ACSA, SPSA, NSRSA, and TBPSS. The proposed CSSA has 88%, 88%, 85%, 91%, and 87% lesser APDP (area power delay product) compared to DSS, ACSA, SPSA, NSRSA, and TBPSS. The proposed CSSA sensing scheme is implemented and simulated in Cadence Virtuoso tool with 45 nm technology. The simulation results of CSSA prove that the proposed CSSA sense amplifier is suitable for high speed and low power SRAM architecture.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"5 ","pages":"Article 100065"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50194254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aluminum-doped zinc oxide (AZO) ultra-thin films deposited by radio frequency sputtering for flexible Cu(In,Ga)Se2 solar cells 用于柔性Cu(In,Ga)Se2太阳能电池的射频溅射铝掺杂氧化锌(AZO)超薄薄膜
Memories - Materials, Devices, Circuits and Systems Pub Date : 2023-10-01 DOI: 10.1016/j.memori.2023.100064
G. Regmi , Sangita Rijal , S. Velumani
{"title":"Aluminum-doped zinc oxide (AZO) ultra-thin films deposited by radio frequency sputtering for flexible Cu(In,Ga)Se2 solar cells","authors":"G. Regmi ,&nbsp;Sangita Rijal ,&nbsp;S. Velumani","doi":"10.1016/j.memori.2023.100064","DOIUrl":"https://doi.org/10.1016/j.memori.2023.100064","url":null,"abstract":"<div><p>Zinc oxide ultra-thin films doping with aluminum (AZO) were produced through radio frequency (rf) sputtering at a fixed pressure of 10 mTorr while varying the rf power between 80 and 140 W. The crystal structure of hexagonal Wurtzite was consistent throughout, with improved crystallinity observed at higher rf powers due to optimal diffusivity of the sputtered particles during nucleation and growth. The size of the crystallite was increased from 10.37 to 16.58 nm with increasing the rf power from 80 to 140 W. The Raman spectra provided evidence of the formation of ultra-thin AZO films, with discernable changes in morphology due to the influence of rf power. The value of optical band gap fluctuated between 3.49 and 3.58 eV as a function of rf power, a basis of the Burstein–Moss effect. The resistivity of the ultra-thin AZO films declined while augmenting rf power. A bilayer structure of intrinsic ZnO (i-ZnO) and AZO was fabricated and exhibited good transmittance, well-crystalline morphology, and excellent electrical conductivity. The optimized window layer (i-ZnO and AZO) was used to produce flexible Cu(In,Ga)Se<sub>2</sub>(CIGSe) solar cells with a photo conversion efficiency of 9.53%. Therefore, ultra-thin ZnO films exhibit potential as a favorable option for a window layer in the production of high-efficient flexible solar cells in cost effective way.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"5 ","pages":"Article 100064"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50194256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Metamaterial modeling in circuit level for THz wave manipulation 用于太赫兹波操作的电路级超材料建模
Memories - Materials, Devices, Circuits and Systems Pub Date : 2023-10-01 DOI: 10.1016/j.memori.2023.100078
Amir Ali Mohammad Khani , Ali Soldoozy , Ava Salmanpour , Toktam Aghaee
{"title":"Metamaterial modeling in circuit level for THz wave manipulation","authors":"Amir Ali Mohammad Khani ,&nbsp;Ali Soldoozy ,&nbsp;Ava Salmanpour ,&nbsp;Toktam Aghaee","doi":"10.1016/j.memori.2023.100078","DOIUrl":"https://doi.org/10.1016/j.memori.2023.100078","url":null,"abstract":"<div><p>Leveraging both method and concept a two-layer THz absorber based on periodic arrays of graphene rings is proposed. The design methodology based on the equivalent circuit model is developed for the proposed absorber. The device is described as an impedance and also simulated by the FEM full-wave method to verify the circuit model accuracy. According to the simulation results, the proposed THz absorber can show perfect absorption from 0.5 THz to 3.5 THz while adjustability capability is obtained for different chemical potentials. Additionally, the sensitivity against geometrical parameters and different incident angels is investigated. Based on the provided results and the simplicity of the structure, the proposed absorber is an ideal candidate for several applications ranging from security to medical imaging.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"5 ","pages":"Article 100078"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50194260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiation hardened 12T SRAM cell with improved writing capability for space applications 用于空间应用的具有改进写入能力的辐射硬化12T SRAM单元
Memories - Materials, Devices, Circuits and Systems Pub Date : 2023-10-01 DOI: 10.1016/j.memori.2023.100071
Rishabh Sharma , Debabrata Mondal , Ambika Prasad Shah
{"title":"Radiation hardened 12T SRAM cell with improved writing capability for space applications","authors":"Rishabh Sharma ,&nbsp;Debabrata Mondal ,&nbsp;Ambika Prasad Shah","doi":"10.1016/j.memori.2023.100071","DOIUrl":"https://doi.org/10.1016/j.memori.2023.100071","url":null,"abstract":"<div><p>This paper presents an inventive and extremely dependable radiation-hardened by-design (RHBD) 12T SRAM Cell with enhanced writing capability (RHWC-12T) for a space radiation environment. The Proposed RHWC-12T SRAM is designed on Cadence Virtuoso with quad-storage nodes and simulated in 45-nm CMOS technology with the supply voltage of 1.1 V and 27<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span>C operating temperature. The proposed cell is tolerant to both 0 to 1 and 1 to 0 SEUs (Single event upsets). Also, it provides better speed and stability compared to the other considered SRAM cells such as 6T, 10T Dohar, Quatro, We-Quatro, QUCCE-12T, and NQuatro. According to simulation findings, the proposed SRAM cell provides 1.053<span><math><mo>×</mo></math></span> better writing stability than the 10T Dohar SRAM cell. In addition, the write access time improves by 3.56<span><math><mo>×</mo></math></span> with 1.36<span><math><mo>×</mo></math></span> area overhead than 10T Dohar SRAM cell.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"5 ","pages":"Article 100071"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50194259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Influence of irradiation energy and damage coefficient on performance of CH3NH3PI3 photocell 辐照能量和损伤系数对CH3NH3PI3光电池性能的影响
Memories - Materials, Devices, Circuits and Systems Pub Date : 2023-10-01 DOI: 10.1016/j.memori.2023.100074
Cliff Orori Mosiori
{"title":"Influence of irradiation energy and damage coefficient on performance of CH3NH3PI3 photocell","authors":"Cliff Orori Mosiori","doi":"10.1016/j.memori.2023.100074","DOIUrl":"https://doi.org/10.1016/j.memori.2023.100074","url":null,"abstract":"<div><p>An organic–inorganic hybrid perovskite as a light-absorbing layer has become a key material in many laminated-structures used in photon sensing devices. Some of these devices are referred to as Organic–inorganic hybrid perovskite (OIHP)-based devices. In recent days, OIHP applications have sky-rocketed in the world of flexible photo-electronics. Due to the higher radiation tolerances, OIHP-based solar cells have been recommended for terrestrial applications which is an application that require low fabrication costs that combines lightweight materials. However, it has been noticed that when it is used in extra-terrestrial environments, these photo cell devices experience premature failures once they interact with fast multispectral radiations in terrestrial spaces. Due to these premature failures, a similar solar cell from an (OIHP)-based perovskite material of methyl ammonium lead iodide (CH<sub>3</sub>NH<sub>3</sub>PI<sub>3</sub>) was investigated as an observer layer under a multi-spectral simulated illumination. After simulation, data for the expected photocurrent flowing through junction components on a glass substrate coated with a thin layer of Titanium dioxide (TiO <sub>2</sub>) film was obtained. The influence of energy of irradiation on damage coefficients, current density, photovoltage and I–V characteristic profile curves were determined and investigated. Some general common macroscopic parameters for photon sensing were analyzed on three dimensions (3D) to determining the minority charge carriers and their induced photo-voltages with respect to junction recombination velocities. The obtained computed macroscopic parameters were incorporated into the Quite Universal Circuit Simulator software for simulation. It was established that damage coefficient influenced the I–V curve and an accumulation of charge carriers magnifies the probability of plasmons initiating degradation of the absorber layer. The atoms in the CH<sub>3</sub>NH<sub>3</sub>Pl<sub>3</sub> crystal lattice system uniformly recoils at resonance and transport the maximum charge carriers across the P-N junction capable of creating a significant damage concentrated within a few micrometer ranges on the surface that may even extend between 0.39 to about 1.01 micrometers in size. This paper therefore evaluates the influence of irradiation energy and damage coefficient in a hybrid CH<sub>3</sub>NH<sub>3</sub>PI<sub>3</sub> mono-facet crystal structure on exposure to multi-spectral illumination at varied irradiation energies.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"5 ","pages":"Article 100074"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50194258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Device-circuit co-design of memristor-based on niobium oxide for large-scale crossbar memory 基于铌氧化物的大规模纵横制存储器忆阻器器件电路协同设计
Memories - Materials, Devices, Circuits and Systems Pub Date : 2023-10-01 DOI: 10.1016/j.memori.2023.100080
Avinash Kumar Gupta, Mani Shankar Yadav, Brajesh Rawat
{"title":"Device-circuit co-design of memristor-based on niobium oxide for large-scale crossbar memory","authors":"Avinash Kumar Gupta,&nbsp;Mani Shankar Yadav,&nbsp;Brajesh Rawat","doi":"10.1016/j.memori.2023.100080","DOIUrl":"https://doi.org/10.1016/j.memori.2023.100080","url":null,"abstract":"<div><p>Memristor-based crossbar architecture emerges as a promising candidate for 3-D memory and neuromorphic computing. However, the sneak current through the unselected cells becomes a fundamental roadblock to their development, resulting in misreading and high power consumption. In this regard, we theoretically investigate the Pt/Ti/NbO<sub>2</sub>/Nb<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>5</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>/Pt-based self-selective memristor, which combines the inherent nonlinearity of the NbO<sub>2</sub> switching layer and the non-volatile operation of the Nb<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>5</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span> memory layer in a single device. The results show that the Pt/Ti/NbO<sub>2</sub>/Nb<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>5</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>/Pt-based self-selective memristor offers the sneak current of 310 nA, selectivity of around 174, and on/off current ratio of 75, compared to the sneak current of approximately 70 <span><math><mi>μ</mi></math></span>A, selectivity of about 4.02, and on/off current ratio of around 1.55 for the Pt/Ti/Nb<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>5</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>/Pt-based memristor device. Our self-selective memristor minimizes the sneak current, but a small on/off current ratio limits their readout margin and power efficiency for crossbar array size greater than 4KB. Further, we demonstrate that breaking down a large-scale crossbar array into smaller subarrays and separating them by transistor switches, called the split crossbar array, is a more efficient way of achieving a practical size crossbar array with improved readout margin and power efficiency. Our results shed light on the potential of the Pt/Ti/NbO<sub>2</sub>/Nb<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>5</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>/Pt-based self-selective memristor and explore the split crossbar array architecture as a practical solution to augment readout margins and power efficiency in a large-scale crossbar array.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"5 ","pages":"Article 100080"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50193733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing free layer of Magnetic Tunnel Junction for true random number generator 真随机数发生器磁隧道结自由层的优化
Memories - Materials, Devices, Circuits and Systems Pub Date : 2023-10-01 DOI: 10.1016/j.memori.2023.100075
Alisha P.B., Dr. Tripti S Warrier
{"title":"Optimizing free layer of Magnetic Tunnel Junction for true random number generator","authors":"Alisha P.B.,&nbsp;Dr. Tripti S Warrier","doi":"10.1016/j.memori.2023.100075","DOIUrl":"https://doi.org/10.1016/j.memori.2023.100075","url":null,"abstract":"<div><p>True random number generators (TRNGs) should ideally generate lengthy chains of non-repeating, uncorrelated bit-streams that are efficient in terms of both energy and area. Current TRNG designs include source of randomness such as CMOS or non-volatile memory based devices with additional circuitry to improve the quality of randomness leading to power and area overhead. This paper addresses these issues by improving the randomness of the Spin-Orbit Torque (SOT)-Magnetic Tunnel Junction cell. Motivated by the observation that free layer thickness of Magnetic Tunnel Junction (MTJ) can be scaled to design a low-barrier device, the paper proposes a novel source of randomness called <span><math><mi>Δ</mi></math></span>SOT. This device is then used to design TRNG circuits that achieves high quality random telegraphic switching behavior without any additional circuitry making it suitable for ultra-low power applications. Evaluations show that <span><math><mi>Δ</mi></math></span>SOT-TRNG has significant reduction in energy (51%) and area (66%) compared to state-of-the-art MTJ based TRNG design. Furthermore, the work shows that the improved switching speed of the reduced barrier junction can results in 65% increase in throughput compared to MTJ based TRNG design.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"5 ","pages":"Article 100075"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50193737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Performance analysis of OTFT-based SRAM topologies 基于OTFT的SRAM拓扑结构的性能分析
Memories - Materials, Devices, Circuits and Systems Pub Date : 2023-10-01 DOI: 10.1016/j.memori.2023.100077
Taniza Marium, S.M. Ishraqul Huq, Oli Lowna Baroi, Md. Shaikh Abrar Kabir, Satyendra N. Biswas
{"title":"Performance analysis of OTFT-based SRAM topologies","authors":"Taniza Marium,&nbsp;S.M. Ishraqul Huq,&nbsp;Oli Lowna Baroi,&nbsp;Md. Shaikh Abrar Kabir,&nbsp;Satyendra N. Biswas","doi":"10.1016/j.memori.2023.100077","DOIUrl":"https://doi.org/10.1016/j.memori.2023.100077","url":null,"abstract":"<div><p>In terms of mechanical flexibility, organic SRAM offers better designs and a commercially feasible option with the ability to deliver acceptable performance. This paper investigates the implementation of different SRAM topologies based on organic thin film transistors (OTFTs). In this work, a compact spice model is used to simulate pOTFT and nOTFT in LTSpice software. Time delays, power consumption, the power delay product (PDP), and static noise margin (SNM) for read and write operations are calculated, and a comparative analysis of OTFT based 6T, 7T, 8T, and 9T SRAM topologies is performed. Among different topologies, 9T OTFT SRAM cell achieves a 1.67× increase in SNM, compared to conventional 6T OTFT-based SRAM cell. The highest figure of merit value of 9T SRAM cell indicates its suitability for various applications.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"5 ","pages":"Article 100077"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50193734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial : 26th International Symposium on VLSI Design and Test 2022 客座编辑:2022年第26届超大规模集成电路设计与测试国际研讨会
Memories - Materials, Devices, Circuits and Systems Pub Date : 2023-10-01 DOI: 10.1016/j.memori.2023.100072
Ambika Prasad Shah , Bhupendra Singh Reniwal
{"title":"Guest Editorial : 26th International Symposium on VLSI Design and Test 2022","authors":"Ambika Prasad Shah ,&nbsp;Bhupendra Singh Reniwal","doi":"10.1016/j.memori.2023.100072","DOIUrl":"https://doi.org/10.1016/j.memori.2023.100072","url":null,"abstract":"","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"5 ","pages":"Article 100072"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50193867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信