{"title":"Advances in organic transistors for artificial perception applications","authors":"Wei Wang , Zihan He , Chong-an Di , Daoben Zhu","doi":"10.1016/j.mtelec.2023.100028","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100028","url":null,"abstract":"<div><p>The rise of intelligent matter and bioelectronics enables the booming development of perception-functionalized devices to serve as a cutting-edge area. Organic field-effect transistors (OFETs) are considered to be attractive candidates for artificial perception applications not only because of their intrinsic flexibility, biocompatibility and solution processability, but also owning to their unique features in efficient molecule design and diverse interface engineering. In this review, we summarized the recent advances and perspectives for organic transistors toward various artificial perception applications. We first introduce the fundamentals of perception-functionalized OFETs. Thereafter, the recent progress in sensors, synaptic transistors and adaptive devices are overviewed. Moreover, we summarized six strategies towards perception-functionalized OFETs, and finally proposed challenges and opportunities of organic transistors in this flourishing field.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"3 ","pages":"Article 100028"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49892250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Sahoo , S. Senapati , S. Samal , Sagar Bisoyi , R. Naik
{"title":"Facile hydrothermally synthesized nanosheets-based Cu0.06-xNi0.03Sn0.03+xS0.12 flower for optoelectronic and dielectric applications","authors":"D. Sahoo , S. Senapati , S. Samal , Sagar Bisoyi , R. Naik","doi":"10.1016/j.mtelec.2023.100030","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100030","url":null,"abstract":"<div><p>The present investigation reports the preparation of Cu<sub>0.06-x</sub>Ni<sub>0.03</sub>Sn<sub>0.03+x</sub>S<sub>0.12</sub> (CNTS) nanosheets (NS) by hydrothermal method and its dielectric and optical behavior. The as-prepared CNTS samples with different Sn content exhibit polycrystalline nature with primary stannite phase along with several secondary phases. The CNTS samples show nanoflower-like morphology consisting of self-assembled NS of an average thickness of 40–50 nm. The morphology remains invariant, but a variation in the band edge absorption and corresponding bandgap variation is observed for the increase in Sn content. The photoluminescence emission with 532 nm excitation of CNTS nanosheets shows the peaks in orange-red regions. The visible emission is primarily due to the presence of different defect states in the NS. From the frequency and temperature-dependent dielectric study, AC conductivity and the impedance spectroscopy-related parameters were evaluated. In the low-frequency region, the CNTS behaves like an unpolarized material, whereas in the high-frequency region, it facilitates the hopping of charge carriers due to the increased frequency range. The electrical conduction is due to the cumulative result of the hopping of charge carriers across the barrier potential and tunneling of polarons formed due to lattice distortion at high temperatures. The behavior of the complex impedance parameters validates the negative temperature coefficient of resistance and the decrease in bulk resistance with the increase in temperature. The tunable semiconducting properties, along with the excellent optical and dielectric behavior of the CNTS materials, promote its application in various cutting-edge optoelectronic and dielectric devices.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"3 ","pages":"Article 100030"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49892256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruoxi Chen , Zheng Gong , Jialin Chen , Xinyan Zhang , Xingjian Zhu , Hongsheng Chen , Xiao Lin
{"title":"Recent advances of transition radiation: Fundamentals and applications","authors":"Ruoxi Chen , Zheng Gong , Jialin Chen , Xinyan Zhang , Xingjian Zhu , Hongsheng Chen , Xiao Lin","doi":"10.1016/j.mtelec.2023.100025","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100025","url":null,"abstract":"<div><p>Transition radiation is a fundamental process of light emission and occurs whenever a charged particle moves across an inhomogeneous region. One feature of transition radiation is that it can create light emission at arbitrary frequency under any particle velocity. Therefore, transition radiation is of significant importance to both fundamental science and practical applications. In this paper, we provide a brief historical review of transition radiation and its recent development. Moreover, we pay special attention to four typical applications of transition radiation, namely the detection of high-energy particles, coherent radiation sources, beam diagnosis, and excitation of surface waves. Finally, we give an outlook for the research tendency of transition radiation, especially its flexible manipulation by exploiting artificially-engineered materials and nanostructures, such as gain materials, metamaterials, spatial-temporal materials, meta-boundaries, and layered structures with a periodic or non-periodic stacking.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"3 ","pages":"Article 100025"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49892258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ilkan Calisir , Xiantao Yang , Elliot L. Bennett , Jianliang Xiao , Yi Huang
{"title":"Enhancing the bandwidth of antennas using polymer composites with high dielectric relaxation","authors":"Ilkan Calisir , Xiantao Yang , Elliot L. Bennett , Jianliang Xiao , Yi Huang","doi":"10.1016/j.mtelec.2023.100026","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100026","url":null,"abstract":"<div><p>We propose a concept using a frequency-dependent property (dielectric relaxation) of dielectric materials to enhance the bandwidth of the antenna widely used in wireless communications. The bandwidth enhancement can be achieved when a loading dielectric material with a relative permittivity that is inversely proportional to the frequency by the power of <em>n</em>. The bandwidth for a selected antenna example could be increased by 135% when the power <em>n</em> = 2. A solid material, composed of plasticized PVDF containing nano-sized silica particles, exhibiting dielectric relaxation of <em>n</em> = 0.52, is developed in order to prove the theoretical concept and used to test the performance of an example mobile phone antenna. The influence of hydrogen bonding on tuning the frequency-dependent power <em>n</em> in the developed composite material is verified. The bandwidth of the antenna was increased by 18% over the operating frequency band using a newly developed dielectrically relaxing material, <em>n</em> = 0.52 compared to the conventional non-relaxing material, <em>n</em> = 0.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"3 ","pages":"Article 100026"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49892249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diffusion limiting layer induced tantalum oxide based memristor as nociceptor","authors":"Debashis Panda , Yu-Fong Hui , Tseung-Yuen Tseng","doi":"10.1016/j.mtelec.2023.100031","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100031","url":null,"abstract":"<div><p>The nociceptor is critical to developed the new generation human-like robots. It is a special sensory receptor that detects noxious stimuli and responds accordingly. This report demonstrates a novel TaN/Ta/TaO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>/ITO/glass memristor as a nociceptor. The device shows bipolar switching with a positive set and a negative reset. High-resolution transmission microscopy observation confirms the presence of the ultrathin Al<sub>2</sub>O<sub>3</sub> layer and the clear interface between oxides and electrodes. The experimental results measured through electric pulses confirm the key features of nociceptors such as threshold, relaxation, allodynia and hyperalgesia properties. The memristor is relaxed after 10 ms at 0.1 V. These nociceptive properties confirm that the TaO<sub>x</sub>-based memristors can be potentially used as electronic nociceptors.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"3 ","pages":"Article 100031"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49906796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional nanostructures for bias-magnet-free and reconfigurable microwave magnetic devices","authors":"Arabinda Haldar","doi":"10.1016/j.mtelec.2022.100008","DOIUrl":"https://doi.org/10.1016/j.mtelec.2022.100008","url":null,"abstract":"<div><p>Recent demonstrations of the reconfigurable microwave properties based on patterned magnetic nanostructures without any external bias magnetic field have been reviewed. Two main design strategies for the nanostructures have been discussed. Firstly, self-biased nanomagnetic networks and multilayer structures that possess two different remanent magnetic states are exploited. Different remanent states are associated with distinct microwave properties and they are within a nanosecond time scale by using a simple field initialization scheme. The dipolar coupling field and the demagnetization field variations have been attributed to the origin of the tunable microwave responses. Secondly, magnetic skyrmions have been explored for tunable microwave properties. In this regard, skyrmion size which is directly related to its resonant modes has been controlled by placing it at different positions in an engineered nanostructure with varying edge repulsions. Finally, an outlook on the future directions and scopes of bias-free microwave devices have been discussed. It is also outlined that such devices have potential implications for the logic and magnonic technologies beyond their applications for microwave magnetic devices.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"2 ","pages":"Article 100008"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949422000080/pdfft?md5=186e9e9e3e4678564e823ad89e014869&pid=1-s2.0-S2772949422000080-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72110626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Broadband Photodetection of Cd3As2: Review and Perspectives","authors":"Yunkun Yang , Faxian Xiu","doi":"10.1016/j.mtelec.2022.100007","DOIUrl":"https://doi.org/10.1016/j.mtelec.2022.100007","url":null,"abstract":"<div><p>Due to the topologically protected gapless electronic structure, Cadmium arsenide (Cd<sub>3</sub>As<sub>2</sub>) is predicted to possess large and high-speed photoresponses in a broad spectrum. The progressively developed device process and material technologies offer the possibility to integrate semimetals with semiconductors or 2D materials into heterojunctions, which can suppress the intrinsically high dark current. Hence, photodetectors based on Cd<sub>3</sub>As<sub>2</sub> and its heterostructures has been gradually evolved in recent years, showing an excellent broadband photodetection capability. In this Perspective, we elaborate on several key parameters for evaluating the performance of a photodetection. We overview recent studies on photodetection and imaging based on Cd<sub>3</sub>As<sub>2</sub> nanostructures or thin films, and further discuss the opportunities and challenges for Cd<sub>3</sub>As<sub>2</sub> photodetectors.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"2 ","pages":"Article 100007"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949422000079/pdfft?md5=645397216c11d0c76912a5d76ef5bdd9&pid=1-s2.0-S2772949422000079-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72115704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Skin-Integrated, Stretchable Triboelectric Nanogenerator for Energy Harvesting and Mechanical Sensing","authors":"Ling Zhao, Zihong Lin, K. Lai","doi":"10.1016/j.mtelec.2022.100012","DOIUrl":"https://doi.org/10.1016/j.mtelec.2022.100012","url":null,"abstract":"","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79915296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Cao, Tzee Luai Meng, Xikui Zhang, Chee Kiang Ivan Tan, Ady Suwardi, Hongfei Liu
{"title":"On functional boron nitride: Electronic structures and thermal properties","authors":"Jing Cao, Tzee Luai Meng, Xikui Zhang, Chee Kiang Ivan Tan, Ady Suwardi, Hongfei Liu","doi":"10.1016/j.mtelec.2022.100005","DOIUrl":"https://doi.org/10.1016/j.mtelec.2022.100005","url":null,"abstract":"<div><p>The past two decades have witnessed extensive explorations of boron nitride (BN) largely due to its unique optoelectronic properties, mechanical robustness, high thermal conductivity, thermal and chemical stability. Crystal growth and functional engineering of BN thin film structures as well as their integrations with two-dimensional materials for advanced applications have been attracting increasing interest in recent years. Here, we have reviewed the basic structural, electronic, and thermal transport properties of BN, especially hexagonal BN both in bulk and reduced dimensionalities. This is followed by a thorough account of progress in atomic layer deposition (ALD) of BN, which has the advantages of being able to grow on 3D surface and control the film thickness in atomic level. Future perspectives are provided through discussing the potential applications of BN along with the material synthesis.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"2 ","pages":"Article 100005"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949422000055/pdfft?md5=44150117c54555a019285c8c182c94d2&pid=1-s2.0-S2772949422000055-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72110625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kanghua Li , Xuke Yang , Feifan Yang , Jungang He , Guangzu Zhang , Shenglin Jiang , Chao Chen , Jiang Tang
{"title":"Flexible short-wavelength infrared photodetector based on extrinsic Sb2Se3","authors":"Kanghua Li , Xuke Yang , Feifan Yang , Jungang He , Guangzu Zhang , Shenglin Jiang , Chao Chen , Jiang Tang","doi":"10.1016/j.mtelec.2022.100011","DOIUrl":"https://doi.org/10.1016/j.mtelec.2022.100011","url":null,"abstract":"<div><p>One-dimensional antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>), enjoying intriguing optoelectronic properties, has drawn extensive attention in solar cells and broadband photodetection. Limited by the bandgap, the reported Sb<sub>2</sub>Se<sub>3</sub> photodetectors always focus on the detection of visible and near-infrared (<1050 nm). Extending the detection waveband can greatly enrich the applications of Sb<sub>2</sub>Se<sub>3</sub> photodetectors. Extrinsic photoconduction is an attractive strategy for extending the detection waveband, for example, the extrinsic Si detector for short-wavelength or long-wavelength infrared detection. However, Sb<sub>2</sub>Se<sub>3</sub> extrinsic photoconduction has not been reported yet. Herein, the extrinsic photoconduction, attributed to the intrinsic point defects, is observed in Sb<sub>2</sub>Se<sub>3</sub> for the first time, which induced a broadened short-wavelength infrared detection of 1650 nm at room temperature. Furthermore, the Sb<sub>2</sub>Se<sub>3</sub> photodetector is fabricated on a flexible polyimide substrate. Meanwhile, the Sb<sub>2</sub>Se<sub>3</sub> photodetectors also demonstrate a fast response speed (rise of 9 µs and fall of 11 µs), a high linear dynamic range of 98 dB, and wide -3dB bandwidth of 163 kHz at 1300 nm. This extrinsic-photoconduction provides feasible design strategies to broaden the detection waveband of the Sb<sub>2</sub>Se<sub>3</sub> photodetectors and can be extended to other chalcogenides.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"2 ","pages":"Article 100011"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949422000110/pdfft?md5=116391beadfdd9f4d9edce53df7dfd92&pid=1-s2.0-S2772949422000110-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72110643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}