{"title":"Van der Waals engineering toward designer spintronic heterostructures","authors":"Jizhe Song , Jianing Chen , Mengtao Sun","doi":"10.1016/j.mtelec.2023.100070","DOIUrl":null,"url":null,"abstract":"<div><p>This perspective explores the emerging field of spintronics within the context of two-dimensional van der Waals (vdW) heterostructures. Spintronics has opened exciting possibilities in the realm of two-dimensional (2D) materials. The integration of diverse 2D materials within vdW heterostructures has unveiled a plethora of previously unknown physical phenomena and potential applications related to spin-dependent transport, gate-tunable spin transport, spin filtering effects, and the emergence of ferromagnetism. These advancements have expanded the scope of spintronics beyond traditional bulk materials, offering unique opportunities for efficient spin injection, manipulation, and detection in 2D devices. A deep understanding of how different materials and interfaces are interconnected and how they affect spin properties is essential for improving the effectiveness and control of spin injection and detection. The study of spintronics in vdW heterostructures holds great promise for advancing the frontiers of developing the next generation of spintronic and quantum devices, revolutionizing information technology and nanoelectronics.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949423000463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This perspective explores the emerging field of spintronics within the context of two-dimensional van der Waals (vdW) heterostructures. Spintronics has opened exciting possibilities in the realm of two-dimensional (2D) materials. The integration of diverse 2D materials within vdW heterostructures has unveiled a plethora of previously unknown physical phenomena and potential applications related to spin-dependent transport, gate-tunable spin transport, spin filtering effects, and the emergence of ferromagnetism. These advancements have expanded the scope of spintronics beyond traditional bulk materials, offering unique opportunities for efficient spin injection, manipulation, and detection in 2D devices. A deep understanding of how different materials and interfaces are interconnected and how they affect spin properties is essential for improving the effectiveness and control of spin injection and detection. The study of spintronics in vdW heterostructures holds great promise for advancing the frontiers of developing the next generation of spintronic and quantum devices, revolutionizing information technology and nanoelectronics.