Materials Today Electronics最新文献

筛选
英文 中文
Bio-based substrate for flexible electronics - application to a 2.45 GHz wearable patch antenna 柔性电子器件的生物基衬底——2.45 GHz可穿戴贴片天线的应用
Materials Today Electronics Pub Date : 2023-09-01 DOI: 10.1016/j.mtelec.2023.100049
Abdelghafour Sid , Pierre-Yves Cresson , Nicolas Joly , Flavie Braud , Tuami Lasri
{"title":"Bio-based substrate for flexible electronics - application to a 2.45 GHz wearable patch antenna","authors":"Abdelghafour Sid ,&nbsp;Pierre-Yves Cresson ,&nbsp;Nicolas Joly ,&nbsp;Flavie Braud ,&nbsp;Tuami Lasri","doi":"10.1016/j.mtelec.2023.100049","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100049","url":null,"abstract":"<div><p>In this paper, a bio-based and biocompatible polymer, Cellulose Laurate (CL), is proposed for flexible radio-frequency (RF) electronics. The synthesis of CL films together with their characterizations (chemical, thermal, mechanical and dielectric) are presented. The results obtained allow considering this material for RF flexible applications as a possible alternative to petrosourced substrates. Therefore, CL has been used to fabricate a flexible patch antenna that operates in an industrial, scientific and medical (ISM) frequency band. The central frequency selected is 2.45 GHz. The antenna fabrication process is based on the combination of laser structuring and the use of copper adhesive tape. Measurements of the antenna reflection coefficient and radiation patterns show that CL is a good candidate as a RF substrate. Furthermore, it is demonstrated that the antenna performance is only slightly impacted under bending conditions.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49871434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The trend of synthesized 2D materials toward artificial intelligence: Memory technology and neuromorphic computing 二维合成材料走向人工智能的趋势:记忆技术和神经形态计算
Materials Today Electronics Pub Date : 2023-09-01 DOI: 10.1016/j.mtelec.2023.100052
Muhammad Naqi, Yongin Cho, Arindam Bala, Sunkook Kim
{"title":"The trend of synthesized 2D materials toward artificial intelligence: Memory technology and neuromorphic computing","authors":"Muhammad Naqi,&nbsp;Yongin Cho,&nbsp;Arindam Bala,&nbsp;Sunkook Kim","doi":"10.1016/j.mtelec.2023.100052","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100052","url":null,"abstract":"<div><p>2D materials, specifically transition metal dichalcogenides (TMDs), have gained massive attention for their potential use in high-integration memory technologies due to their exceptional carrier transport, atomically thin structure, and superior physical and electronic properties. High-density memory processors and complex hardware neural architectures based on TMDs have been developed and shown to have exceptional memory properties, making them a potential competitor to conventional Si technology. However, TMDs are still facing challenges with achieving high yields at high-density levels when compared to Si-based semiconductor technology. This review article covers the synthesis methods, memory device structures, high-volume circuits, and neuromorphic computing of TMD materials. We briefly discuss a plethora of synthesis methods that are utilized to achieve large-area uniform distribution in the fabrication of memory arrays. Various memory device architectures based on two-terminal and three-terminal designs are introduced, offering comprehensive prospects for utilizing TMDs in neuromorphic computing and developing energy-efficient and low-power neural networks for complex computational tasks beyond conventional Si-based architecture. Finally, the potential and challenges of utilizing TMDs in neuromorphic circuits are briefly discussed, including perspectives on system architecture and performance, synaptic functionalities, implementing ANN algorithms, and applications to artificial intelligence at high-density levels.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49871437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropic mass transport enables distinct synaptic behaviors on 2D material surface 各向异性质量输运使二维材料表面的突触行为明显不同
Materials Today Electronics Pub Date : 2023-09-01 DOI: 10.1016/j.mtelec.2023.100047
Zhe Yang , Ziyan Yang , Long Liu , Xin Li , Junze Li , Changying Xiong , Xianliang Mai , Hao Tong , Yi Li , Kan-Hao Xue , Xiaoyong Xue , Ming Xu , Dehui Li , Peng Zhou , Xiangshui Miao
{"title":"Anisotropic mass transport enables distinct synaptic behaviors on 2D material surface","authors":"Zhe Yang ,&nbsp;Ziyan Yang ,&nbsp;Long Liu ,&nbsp;Xin Li ,&nbsp;Junze Li ,&nbsp;Changying Xiong ,&nbsp;Xianliang Mai ,&nbsp;Hao Tong ,&nbsp;Yi Li ,&nbsp;Kan-Hao Xue ,&nbsp;Xiaoyong Xue ,&nbsp;Ming Xu ,&nbsp;Dehui Li ,&nbsp;Peng Zhou ,&nbsp;Xiangshui Miao","doi":"10.1016/j.mtelec.2023.100047","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100047","url":null,"abstract":"<div><p>Anisotropy is an intrinsic property in crystals with low structural symmetry, and such well-textured materials usually show distinct electronic transport and optical properties along different lattice orientations, offering wide applications in electronic and photonic devices. As a typical low-symmetry materials, crystalline GeSe with orthorhombic structure shows large electric and optical anisotropies. In this work, we take advantage of the anisotropic mass transport and filamentary growth of Ag ions on the GeSe surface to fabricate planar memristive devices which show directional memory and transient switching phenomena. The anisotropic switching behaviors stem from the distinct morphology of metallic filaments that are directionally dependent on the mobility of ions, e.g., ions diffusing along the low-barrier direction tend to form stark conductive channels while those with low mobility only entail slim and weak dendrites, which have been clearly observed under electronic microscopy. The functionality could be utilized to mimic various synaptic events, such as long-term memory enabled by stable conductive channels and short-term memory by the spontaneous rupture of weak filaments, all implemented in one physical device. Two integration schemes based on the anisotropic devices are designed and demonstrated for different application scenarios, paving the way for its applications in multifunctional brain-inspired computing systems.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49871435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inkjet-printed flexible piezoelectric sensor for self-powered biomedical monitoring 用于自供电生物医学监测的喷墨打印柔性压电传感器
Materials Today Electronics Pub Date : 2023-09-01 DOI: 10.1016/j.mtelec.2023.100056
Hamed Abdolmaleki , Astri Bjørnetun Haugen , Youssif Merhi , Jens Vinge Nygaard , Shweta Agarwala
{"title":"Inkjet-printed flexible piezoelectric sensor for self-powered biomedical monitoring","authors":"Hamed Abdolmaleki ,&nbsp;Astri Bjørnetun Haugen ,&nbsp;Youssif Merhi ,&nbsp;Jens Vinge Nygaard ,&nbsp;Shweta Agarwala","doi":"10.1016/j.mtelec.2023.100056","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100056","url":null,"abstract":"<div><p>Printed electronics has enabled fabrication of electronic components and devices with low cost and more manufacturing and design freedom. This manufacturing technique has been successfully employed as a complementary fabrication approach to conventional nanolithography and microfabrication processes to create flexible and stretchable electronics. Fluoropolymers are crucial components in electronic devices and components, owing to their piezoelectric, triboelectric, pyroelectric, ferroelectric, and dielectric properties. In this research, we report fabrication of an inkjet-printed piezoelectric sensor based on poly (vinylidenefluoride trifluoroethylene) (PVDF-TrFE) and amine functionalized graphene oxide (AGO) for biomedical monitoring. The piezoelectric inkjet ink was obtained by optimizing the fluid mechanic properties based on Reynold and Weber numbers. The inkjet-printed freestanding film was characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), wide-angle X-Ray scattering (WAXS), and differential scanning calorimetry (DSC). The piezoelectric sensor was fabricated by deposition of silver electrodes on each side of the piezoelectric film, followed by wiring and encapsulation. The sensor was subjected to an electric field of 1500 kV/cm to align the internal dipoles and induce net polarization. The fabricated flexible piezoelectric sensor was employed for monitoring biomedical signals such as finger tapping, joint bending, and swallowing. The sensor demonstrated outstanding sensitivity of 0.1 V/kPa and excellent repeatability and stability over 1000 cycles.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49871429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Flexible, active P-typed copper(I) thiocyanate (p-CuSCN) films as self-powered photodetectors for large-scale optoelectronic systems 柔性、活性p型硫氰酸铜(p-CuSCN)薄膜作为大规模光电系统的自供电光电探测器
Materials Today Electronics Pub Date : 2023-09-01 DOI: 10.1016/j.mtelec.2023.100048
Sancan Han , Qingqiang Zhao , Qing Hou , Yuanpeng Ding , Jiale Quan , Yixin Zhang , Fangyu Wu , Yifei Lu , Hehua Zhang , Huijun Li , Ding Wang , Enming Song
{"title":"Flexible, active P-typed copper(I) thiocyanate (p-CuSCN) films as self-powered photodetectors for large-scale optoelectronic systems","authors":"Sancan Han ,&nbsp;Qingqiang Zhao ,&nbsp;Qing Hou ,&nbsp;Yuanpeng Ding ,&nbsp;Jiale Quan ,&nbsp;Yixin Zhang ,&nbsp;Fangyu Wu ,&nbsp;Yifei Lu ,&nbsp;Hehua Zhang ,&nbsp;Huijun Li ,&nbsp;Ding Wang ,&nbsp;Enming Song","doi":"10.1016/j.mtelec.2023.100048","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100048","url":null,"abstract":"<div><p>P-type copper(I) thiocyanate (p-CuSCN) semiconductor materials have attracted a great deal of attention in the application for microsystems and optoelectronic engineering. Major challenge is in the development of advanced fabrication/growth techniques and resultant high-efficiency devices. Herein, <em>in situ</em> grown p-CuSCN film with different morphology are successfully achieved on flexible Cu foil by the simple solid-liquid interface reaction, which displays excellent UV photoresponse due to effective charge transport, thereby contributing to the large-area fabrication technique and the high-performance operation. The self-powered, highly sensitive and flexible NGQDs/CuSCN heterojunction device shows the ultrahigh photoresponsivity of 1.6 A/W and detectivity of 0.8 × 10<sup>12</sup> Jones at 3 V bias under 360 nm illumination, and the ultrafast photoresponse speed (T<sub>r</sub>= 10 µs, T<sub>d</sub>=0.6 ms), with relatively stable performance under bending cycles. The results provides an easy-processing and promising route to fabricate large-area p-CuSCN with remarkable optoelectronic performance, which opens up a new avenue on more novel works for the material design in practical photodetection.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49871430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of common materials for hybrid quantum magnonics 杂化量子磁振学常用材料综述
Materials Today Electronics Pub Date : 2023-09-01 DOI: 10.1016/j.mtelec.2023.100044
Xufeng Zhang
{"title":"A review of common materials for hybrid quantum magnonics","authors":"Xufeng Zhang","doi":"10.1016/j.mtelec.2023.100044","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100044","url":null,"abstract":"<div><p>Hybrid magnonics is an emerging research area focusing on various types of interactions between magnons (quantized collective spin excitations) and other information carriers, which has found broad practical applications ranging from high-precision magnetometry and thermometry to quantum transduction and neuromorphic computing. In this paper we review different types of hybrid magnonic devices, and the materials that are commonly used in each device type. We also discuss recent trends in the exploration of new materials and interaction mechanisms, and future research challenges and opportunities.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49871433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
PEDOT:PSS-based electrochromic materials for flexible and stretchable devices PEDOT:用于柔性和可拉伸器件的基于pss的电致变色材料
Materials Today Electronics Pub Date : 2023-06-01 DOI: 10.1016/j.mtelec.2023.100036
Zhiqi Wang , Ruiyuan Liu
{"title":"PEDOT:PSS-based electrochromic materials for flexible and stretchable devices","authors":"Zhiqi Wang ,&nbsp;Ruiyuan Liu","doi":"10.1016/j.mtelec.2023.100036","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100036","url":null,"abstract":"<div><p>PEDOT:PSS-based smart electrochromic materials shows fast, real-time and efficient reversible color change due to redox process under influence of electric field. The color changes can directly carry readable visual information by the naked human eyes, showing promising applications in smart display, health monitoring, and energy storage. In this perspective, we summarize the recent progress of PEDOT:PSS-based electrochromic materials and their applications in wearable devices. We start with the electrochromic mechanism, synthesis and properties of various PEDOT:PSS complexes. Flexible and stretchable electrochromic devices, as well as their typical applications are then explored. Finally, we provide an overview of the current challenges and future perspectives for the development of advanced materials engineering and devices application.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49885001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0D-2D heterostructure for making very large quantum registers using ‘itinerant’ Bose-Einstein condensate of excitons 利用激子的“流动”玻色-爱因斯坦凝聚体制造超大量子寄存器的0D-2D异质结构
Materials Today Electronics Pub Date : 2023-06-01 DOI: 10.1016/j.mtelec.2023.100039
Amit Bhunia , Mohit Kumar Singh , Maryam Al Huwayz , Mohamed Henini , Shouvik Datta
{"title":"0D-2D heterostructure for making very large quantum registers using ‘itinerant’ Bose-Einstein condensate of excitons","authors":"Amit Bhunia ,&nbsp;Mohit Kumar Singh ,&nbsp;Maryam Al Huwayz ,&nbsp;Mohamed Henini ,&nbsp;Shouvik Datta","doi":"10.1016/j.mtelec.2023.100039","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100039","url":null,"abstract":"<div><p>Presence of coherent ‘resonant’ tunneling in quantum dot (zero-dimensional) - quantum well (two-dimensional) heterostructure is necessary to explain the collective oscillations of average electrical polarization of excitonic dipoles over a macroscopically large area. This was measured using photo excited capacitance as a function of applied voltage bias. Resonant tunneling in this heterostructure definitely requires momentum space narrowing of charge carriers inside the quantum well and that of associated indirect excitons, which indicates bias dependent ‘itinerant’ Bose-Einstein condensation of excitons. Observation of periodic variations in negative quantum capacitance points to in-plane coulomb correlations mediated by long range spatial ordering of indirect, dipolar excitons. Enhanced contrast of quantum interference beats of excitonic polarization waves even under white light and observed Rabi oscillations over a macroscopically large area also support the presence of density driven excitonic condensation having long range order. Periodic presence (absence) of splitting of excitonic peaks in photocapacitance spectra even demonstrate collective coupling (decoupling) between energy levels of the quantum well and quantum dots with applied biases, which can potentially be used for quantum gate operations. All these observations point to experimental control of macroscopically large, quantum state of a two-component Bose-Einstein condensate of excitons in this quantum dot - quantum well heterostructure. Therefore, in principle, millions of two-level excitonic qubits can be intertwined to fabricate large quantum registers using such hybrid heterostructure by controlling the local electric fields and also by varying photoexcitation intensities of overlapping light spots.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49884415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nonequilibrium quantum transport properties of tetragonal zinc chalcogenide monolayers 四方硫系锌单分子层的非平衡量子输运性质
Materials Today Electronics Pub Date : 2023-06-01 DOI: 10.1016/j.mtelec.2023.100041
Yaoyun Zhu , Shuang Meng , Jia Zhou
{"title":"Nonequilibrium quantum transport properties of tetragonal zinc chalcogenide monolayers","authors":"Yaoyun Zhu ,&nbsp;Shuang Meng ,&nbsp;Jia Zhou","doi":"10.1016/j.mtelec.2023.100041","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100041","url":null,"abstract":"<div><p>Tetragonal zinc chalcogenide monolayers (TZCM) are emerging as interesting electronic materials with a direct band gap and relatively high carrier mobility. In this work, we report a theoretical investigation of electronic transport properties and photoelectric response properties of TZCM with gold contacts by density functional theory (DFT) and non-equilibrium Green's function (NEGF) methods. When there is no gate voltage applied, the current increases nonlinearly as bias voltage increases. Among the four proposed devices, the Au(100)/ZnS/Au(100) device has the best electronic transport performance and is most sensitive to the adjustment of bias voltage and gate voltage. The photocurrent calculation results indicate that the low-frequency oscillatory photocurrent of the Au(100)/ZnSe/Au(100) device in the high photon energy region may have potential applications in ultraviolet light-emitting diodes. The Au(100)/Zn<sub>2</sub>SeS/Au(100) device has more stable photoelectric response and polarization sensitivity than the Au(100)/Zn<sub>2</sub>SSe/Au(100) device. The Au(100)/TZCM/Au(100) devices exhibit considerable photocurrent and good extinction ratios. This work could pave the way for the future application of TZCM in the field of optoelectronics and so on.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49885004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetization switching in van der Waals systems by spin-orbit torque 基于自旋轨道转矩的范德华体系磁化开关
Materials Today Electronics Pub Date : 2023-06-01 DOI: 10.1016/j.mtelec.2023.100037
Xin Lin , Lijun Zhu
{"title":"Magnetization switching in van der Waals systems by spin-orbit torque","authors":"Xin Lin ,&nbsp;Lijun Zhu","doi":"10.1016/j.mtelec.2023.100037","DOIUrl":"https://doi.org/10.1016/j.mtelec.2023.100037","url":null,"abstract":"<div><p>Electrical switching of magnetization via spin-orbit torque is of great potential in fast, dense, energy-efficient nonvolatile magnetic memory and logic technologies. Recently, enormous efforts have been stimulated to investigate switching of perpendicular magnetization in van der Waals systems that have unique, strong tunability and spin-orbit coupling effect compared to conventional metals. In this review, we first give a brief, generalized introduction to the spin-orbit torque and van der Waals materials. We will then discuss the recent advances in magnetization switching by the spin current generated from van der Waals materials and summary the progress in the switching of van der Waals magnetization by the spin-orbit torque.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49885002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信