Toru Hamamoto, Nhamo Nhamo, David Chikoye, Ikabongo Mukumbuta, Yoshitaka Uchida
{"title":"Effects of organic amendments on crop production and soil fauna community in contrasting Zambian soils","authors":"Toru Hamamoto, Nhamo Nhamo, David Chikoye, Ikabongo Mukumbuta, Yoshitaka Uchida","doi":"10.1002/sae2.12120","DOIUrl":"https://doi.org/10.1002/sae2.12120","url":null,"abstract":"<p>The use of organic materials has been widely promoted to improve soil health. Surface-active soil macrofauna serves as a key biological indicator of soil health as it supports agricultural productivity. However, the effects of organic amendments on soil fauna and their relationships with crop production are still unknown in C-limited soil conditions. A field experiment was conducted under different fertilizer management in two soils with contrasting C content (14.2/5.1 g C kg<sup>−1</sup> at the Lusaka/Kabwe site) in Zambia. Our results show a contrast in soil fauna abundance in two soils. During the experimental period, we collected a total of 926 individual soil fauna in all plots at the Lusaka site, while only 145 individual soil fauna were collected at the Kabwe site. Soil fauna was predominantly composed of Araneae, Coleoptera, Dermaptera, Diplopoda, and Orthoptera. Organic amendments significantly increased soil fauna abundance only at the Lusaka site, and the abundance of Coleoptera and Diplopoda was highly related to the crop yield. At the Kabwe site, the effect of organic amendment on soil fauna abundance was minimal, although significantly higher crop yields were observed in soils with organic amendment. These contrasting results may be due to soil nutrient and water status between different sites. Our findings suggest that site-specific strategies are required to protect and enhance soil fauna communities in C-depleted soils.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.12120","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashenafei Gezahegn, Yihenew G. Selassie, Getachew Agegnehu, Solomon Addisu, Fekremariam Asargew Mihretie, Yudai Kohira, Mekuanint Lewoyehu, Shinjiro Sato
{"title":"The impact of water hyacinth biochar on maize growth and soil properties: The influence of pyrolysis temperature","authors":"Ashenafei Gezahegn, Yihenew G. Selassie, Getachew Agegnehu, Solomon Addisu, Fekremariam Asargew Mihretie, Yudai Kohira, Mekuanint Lewoyehu, Shinjiro Sato","doi":"10.1002/sae2.12117","DOIUrl":"https://doi.org/10.1002/sae2.12117","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Options for managing water hyacinths (WHs) include converting the biomass into biochar for soil amendment. However, less has been known about the impact of WH-based biochar developed in varying pyrolysis temperatures on plant growth and soil qualities.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>A pot experiment was undertaken in a factorial combination of WH biochars (WHBs) developed at three temperatures (350°C, 550°C and 750°C) and two application rates (5 and 20 t ha<sup>−1</sup>), plus a control without biochar. Maize was grown as a test crop for 2 months under natural conditions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Our study showed that applying WHB developed between 350°C and 750°C at 20 t ha<sup>−1</sup> increased maize shoot and root dry biomass by 47.7% to 17.6% and 78.4% to 54.1%, respectively. Nevertheless, raising the biochar pyrolysis temperature decreased maize growth, whereas increasing the application rate displayed a positive effect. The application of WHB generated at 350°C and 550°C at 20 t ha<sup>−1</sup> resulted in significant improvements in soil total nitrogen (17.9% to 25%), cation exchange capacity (27.3% to 20.2%), and ammonium-nitrogen (60.7% to 59.6%), respectively, over the control. Additionally, applying WHB produced from 350°C to 750°C at 20 t ha<sup>−1</sup> enhanced soil carbon by 38.5%–56.3%, compared to the control. Conversely, applying biochar produced at 750°C resulted in higher soil pH (6.3 ± 0.103), electrical conductivity (0.23 ± 0.01 dS m<sup>−1</sup>) and available phosphorus (21.8 ± 2.53 mg kg<sup>−1</sup>).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>WHBs developed at temperatures of 350°C and 550°C with an application rate of 20 t ha<sup>−1</sup> were found to be optimal for growing maize and improving soil characteristics. Our study concludes that pyrolysis temperature significantly governs the effectiveness of biochar produced from a specific biomass source.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.12117","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of banana peel extract (Musa sapientum L.) as a natural antimicrobial for livestock farming","authors":"Tistaya Semangoen, Rotruedee Chotigawin, Tanikan Sangnim, Nattida Chailerd, Taddao Pahasup-anan, Kampanart Huanbutta","doi":"10.1002/sae2.12118","DOIUrl":"https://doi.org/10.1002/sae2.12118","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>One of the primary objectives of managing microbial content in livestock farming is to control diseases in the respective animals. Nevertheless, the pervasive development of drug-resistant bacteria is a consequence of the high levels of antibiotic use that are necessary to achieve this objective. This situation exacerbates animal disease and poses a threat to human health. The purpose of this study was to investigate alternative microbial control methods in livestock farming using banana peel extract.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials & Methods</h3>\u0000 \u0000 <p>The antioxidant and antimicrobial activities of peel extracts from unripe and ripe cultivated bananas were examined and compared.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The results are notable because they show that the unripe banana peel extracts exhibited significantly better antioxidant activity than the ripe banana peel extracts in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) tests. Furthermore, the unripe banana peels showed significant antimicrobial activity in vitro against four bacteria that are commonly found in swine and poultry houses, including <i>Staphylococcus epidermidis</i>, <i>Exiguobacterium indicum</i>, <i>Bacillus cereus, Bacillus siamensis, Bacillus altitudinis, Pantoea ananatis</i>, and <i>Bacillus megaterium</i>. This activity was probably due to their high levels of total phenolic content and total flavonoid content. Then, the spray formulation loaded with the concentrated unripe banana peel extract that was five times higher than the minimum bactericidal concentration was developed and tested. Ethanol, sodium benzoate, tween 80, and glycerine were applied as additives in the spray formulation to increase the extract's solubility and stability. It was found that the developed spray formulation effectively inhibited the growth of <i>S. epidermidis</i>.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>These research outcomes show that the possible application of banana peel extract is an excellent approach because it is an eco-friendly alternative to control microorganisms undesired microbial growth in farm animals.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.12118","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guiping Ye, Kam W. Tang, Xiao Lin, Ping Yang, Chuan Tong, Zi-Yang He, Mengmeng Feng, Milin Deng, Yongxin Lin
{"title":"Conversion of coastal marsh to aquaculture ponds altered soil ammonia oxidiser community and decreased ammonia oxidation potential","authors":"Guiping Ye, Kam W. Tang, Xiao Lin, Ping Yang, Chuan Tong, Zi-Yang He, Mengmeng Feng, Milin Deng, Yongxin Lin","doi":"10.1002/sae2.12115","DOIUrl":"10.1002/sae2.12115","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>As a crucial component of the nitrogen cycle, ammonia oxidation in soil can be driven by canonical ammonia-oxidising archaea (AOA) and bacteria, as well as complete ammonia oxidiser (CMX <i>Nitrospira</i>). Land use change can disrupt and alter the soil microbial community and the nitrogen cycle.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials & Methods</h3>\u0000 \u0000 <p>We compared the soil ammonia-oxidising microorganisms and ammonia oxidation potentials in a coastal marsh and nearby reclaimed aquaculture ponds, monthly over a 10-month period in southeastern China. The abundance of ammonia oxidisers was assessed by real-time quantitative PCR and the community structure of CMX <i>Nitrospira</i> was evaluated by high-throughput sequencing.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The ammonia oxidiser community was dominated by AOA in the marsh (91%) and was made up of similar proportions of AOA and CMX <i>Nitrospira</i> in the aquaculture ponds (46%–47%). The CMX <i>Nitrospira</i> community structure changed significantly between habitat types, mainly driven by opposite change in relative abundance of clade B versus clades A.2 and A.3. Aquaculture reclamation decreased the soil potential ammonia oxidation rate (PAO) by an order of magnitude, and AOA was the only significant predictor of PAO among all ammonia oxidiser groups.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Our results suggest that aquaculture reclamation from coastal marshes would significantly alter the soil ammonia oxidiser community and decrease ammonia oxidation rate, and CMX <i>Nitrospira</i> appear to play a relative larger role in nitrogen cycling in aquaculture ponds.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.12115","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141812057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing the role of field isolated Pseudomonas and Bacillus as growth-promoting rizobacteria on avocado (Persea americana) seedlings","authors":"Richard A. Solórzano-Acosta, Kenyi R. Quispe","doi":"10.1002/sae2.12114","DOIUrl":"https://doi.org/10.1002/sae2.12114","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>This research aims to assess the efficacy of two genera of rhizobacteria from avocado field isolated: <i>Pseudomonas</i> and <i>Bacillus</i>, as plant growth-promoting microorganisms in Hass avocado trees grafted onto Zutano rootstock.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>The siderophore-producing and phosphate-solubilizing capacity of each isolated strain was determined and plant growth-promoting activity, nutrient accumulation, and nutrient use efficiency in Zutano variety avocado seedlings were evaluated. Molecular identification was carried out by amplification of the 16S rDNA gene of the isolated strains.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p><i>Pseudomonas putida</i>, <i>Lysinibacillus macroides</i>, <i>Lysinibacillus xylanilyticus</i>, <i>Lysinibacillus fusiformis</i>, <i>Bacillus subtilis</i> and <i>Pseudomonas plecoglossicida</i>, were identified as the PGPR of the <i>Bacillus</i> and <i>Pseudomonas</i> genera, predominant in the avocado rhizosphere. There was found 11 phosphate solubilizing strains and 2 siderophore-producing strains. The phosphate-solubilizing strains, <i>B. subtilis</i> and <i>P. plecoglossicida</i>, stimulated the growth of Zutano seedlings, increasing their root dry weight (g), stem dry weight (g), leaf dry weight (g) and leaf area (cm<sup>2</sup>). Significant differences were found in nutrient uptake efficiency between inoculated plants and noninoculated plants. The increase in root biomass responded to greater phosphorus and potassium absorption in plants inoculated with <i>P. plecoglossicida</i>, due to this strain's high phosphate solubilization efficiency (266%).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The highest plant growth promotion strains were Bac F (<i>B. subtilis</i>), Bac M (<i>P. plecoglossicida</i>) and P1 (<i>P. putida</i>), which achieved the highest increase in root and leaf dry weight, as well as the highest nutrient extractions and nutrient uptake efficiency.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.12114","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Amino acid-based biostimulants and microbial biostimulants promote the growth, yield and resilience of strawberries in soilless glasshouse cultivation","authors":"Ruvini Ranasingha, Anya Perera, Kambiz Baghalian, Christos Gerofotis","doi":"10.1002/sae2.12113","DOIUrl":"https://doi.org/10.1002/sae2.12113","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>The increasing demand for strawberries in the United Kingdom, valued for their flavour, nutrition and economic significance, presents challenges in maintaining consistent production, especially under various biotic and abiotic stress conditions. Traditional reliance on conventional agrochemicals to meet these demands is tempered by concerns about their health and environmental impacts, paving the way for eco-friendly alternatives, such as biostimulants. However, their efficiency in commercial table-top systems for June-bearing and ever-bearing strawberries under glasshouse conditions remains underexplored.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and methods</h3>\u0000 \u0000 <p>This study investigated the efficiency of two commercial biostimulants in enhancing the growth, productivity and resilience of two strawberry varieties: ‘Malling Centenary’ (June-bearer) and ‘Malling Ace’ (ever-bearer) strawberry cultivars in a soilless hydroponic system within an unheated glasshouse. ‘Vitalnova Prime’ (VP), an amino acid and peptide-based biostimulant derived from yeast, was applied every 2 weeks as a foliar spray (1 mL/L), whereas ‘Vitalnova Triboost’ (VT), a microbial inoculant with live cultures, was incorporated into the medium post-transplanting (500 g/m<sup>3</sup>).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>VP significantly enhanced vegetative growth in both cultivars, resulting in substantial increases in number of leaves, crowns, crown diameter and shoot biomass accumulation compared to the control. VT also effectively improved multiple growth parameters compared to the control. Both biostimulants similarly improved crown formation and shoot dry weight in ‘Malling Centenary’. In terms of yield, both VP and VT increased yield in ‘Malling Ace’; notably, VP significantly enhanced the number of marketable fruits by 55% and average fruit weight by 56% compared to the control. Additionally, both biostimulants significantly reduced the occurrence of diseased fruits in both cultivars.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>This study demonstrates that biostimulants significantly enhance the growth, yield, and resilience of strawberries in soilless cultivation systems within unheated glasshouses. These findings suggest that biostimulants offer a sustainable and promising approach to addressing the increasing global demand for high-quality strawberries.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.12113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alena Förster, Karin Hohberg, Frank Rasche, Christoph Emmerling
{"title":"Nematode community structure suggests perennial grain cropping cultivation as a nature-based solution for resilient agriculture","authors":"Alena Förster, Karin Hohberg, Frank Rasche, Christoph Emmerling","doi":"10.1002/sae2.12112","DOIUrl":"https://doi.org/10.1002/sae2.12112","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Conventional agricultural land-use may negatively impact biodiversity and the environment due to the increased disturbances to the soil ecosystem by tillage, for example. Cultivation of the perennial grain intermediate wheatgrass (<i>Thinopyrum intermedium</i>, IWG, Kernza®) is a nature-based solution for sustainable agriculture, improving nutrient retention mainly through its extensive root system. Nematodes serve as sensitive bioindicators, detecting early changes in the soil food web, reflecting in changes in their community structure.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>IWG and annual wheat sites in South France, Belgium and South Sweden were investigated in April 2022 for two depths (5–15 cm; 25–35 cm) to evaluate the difference in nematode community structure among the cropping systems.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Sites with IWG cultivation held an accumulation of structure indicators (c-p 3–5 nematodes) compared to sites with annual wheat cultivation. A generalised linear mixed model revealed significantly more root feeders, especially for the subsoil, under IWG as a result of the perennial cultivation. The maturity index, plant-parasitic index, channel index and structure index were greater for IWG sites. The enrichment index was greater for annual wheat sites due to the dominance of bacterivores and enrichment indicators (c-p 1 nematodes). The nematode community structure (weighted faunal profile analysis) indicates IWG sites as being a generally undisturbed system with efficient nutrient cycling and balanced distribution of feeding types, as well as higher metabolic footprint values for root feeders (including plant-parasitic nematodes) and fungivores. Annual wheat sites, on the other hand, held indicators of a disturbed system with increased occurrence of opportunistic species and a more bacterial driven pathway. The topsoil had an increased occurrence of structure indicators in both cropping systems.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>IWG creates favourable conditions for a diverse food web, including improved nutrient cycling and a heterogeneous resource environment, regardless of climatic conditions, establishing it as a stable and resilient agricultural management system.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.12112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The sustainability of small-scale sheep and goat farming in a semi-arid Mediterranean environment","authors":"Giuseppe Timpanaro, Vera Teresa Foti","doi":"10.1002/sae2.12111","DOIUrl":"https://doi.org/10.1002/sae2.12111","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Small-scale sheep and goat farming is one of the business models the EU depends on to achieve the objectives of the Green Deal. However, these production systems are characterized by structural weaknesses that risk being aggravated by international events, such as the post-COVID-19 crisis and reconstruction, the conflict in the European area and the generalized inflationary wave. Against this scenario, the work aims to expand knowledge of these companies’ sustainability levels to assess their performance, business model, the strategic keys to their resilience and chances of survival in the changed international scenario.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials & Methods</h3>\u0000 \u0000 <p>The approach chosen is SAFA (Sustainability Assessment of Food and Agriculture Systems), the FAO's holistic framework. The empirical analysis focused on a sample of farms in a semi-arid Mediterranean area.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The results demonstrate the sustainability lag in governance, social capital, fertilizer management, landscape heritage and economic terms. This is due to the absence of strategic planning on soil, environmental and livestock management, genetic and human resource management, and farm structure. Regarding economic resilience on performance, the weight of the CAP (common agricultural policy) for these farms and the effect of high production costs are high.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>The work is helpful for different stakeholders, who are invited both to structure the intervention of eco-schemes on animal welfare for the 2023/2027 programming period and to support farm development plans to foster the flow of innovation, cooperation and sustainability.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.12111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael W. Kinyua, Monicah W. Mucheru-Muna, Peter Bolo, Job Kihara
{"title":"Plant spatial configurations and their influences on phenological traits of cereal and legume crops under maize-based intercropping systems","authors":"Michael W. Kinyua, Monicah W. Mucheru-Muna, Peter Bolo, Job Kihara","doi":"10.1002/sae2.12110","DOIUrl":"https://doi.org/10.1002/sae2.12110","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Intercropping systems have a great potential for crop diversification thus increasing smallholder systems' resilience to climate change while improving soil health. However, optimal benefits associated with intercropping systems are rarely realised because of the interspecific competition for growth resources among the intercropped species.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methodology</h3>\u0000 \u0000 <p>Six trials were established in the high and low rainfall agroecological zones of Babati district in Tanzania to assess how promising cropping systems with different plant spatial configurations would influence the phenological development of intercropped maize, bean and pigeonpea. Cropping systems under study included a sole maize system rotated with a pigeonpea-bean intercrop dubbed Doubled-up legume (DUL), maize-pigeonpea system both with and without de-topping, an innovation comprising double maize rows alternated with pigeonpea and beans (Mbili-Mbili), maize-pigeonpea system with two maize seeds sown within a 50 cm intra-row space, a vertical-architecture Meru H513-pigeonpea system and a farmer practice.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Branch formation was significantly higher in DUL than in maize-based systems (<i>p</i> ≤ 0.05). Seasonal weather had upto 30% influence on pigeonpea flowering, with DUL having highest (<i>p</i> ≤ 0.05) flower production. The rate of pigeonpea branch and flower production in Mbili-Mbili was stable across seasons relative to other maize-pigeonpea systems. Doubled-up legume and farmer practice had pigeonpea litter yield of between 1 and 2 t ha<sup>−1</sup> which was at least 0.5 t ha<sup>−1</sup> higher than in maize-based systems (<i>p</i> ≤ 0.05). During the period preceding early maize reproductive stages, Mbili-Mbili increased light interception by 30% and 63% compared to maize-based systems and DUL, respectively. Maize toppings had higher (94%) P content than stover biomass that remained until harvest.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Overall, maize-legume systems had higher intercropping efficacy than sole maize system, both in interception use efficiency, soil mulch cover, among other soil health benefits. Mbili-Mbili and DUL also had increased phenological benefits on intercropped legumes however, the latter was prone to seasonal weather variability.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.12110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simranpreet K. Sidhu, Lincoln Zotarelli, Lakesh K. Sharma
{"title":"A review of potassium significance and management approaches in potato production under sandy soils","authors":"Simranpreet K. Sidhu, Lincoln Zotarelli, Lakesh K. Sharma","doi":"10.1002/sae2.12106","DOIUrl":"https://doi.org/10.1002/sae2.12106","url":null,"abstract":"<p>This review focuses on the critical role of potassium (K) in potato cultivation, addressing its essential functions in plant metabolism and the challenges in managing soil K levels, specifically under sandy soils. The K use efficiency is higher in potatoes, with the maximum potential up to 55%, compared to cereals at 19%. Potatoes require high quantities of K, especially in well-drained sandy soils, to maximise growth and yield. Because K is a highly leaching-prone nutrient in these soils, its deficiencies could affect plant health, metabolism (K is required to activate more than 60 enzymes) and productivity. Optimal potato growth necessitates maintaining 1.8% K in the tubers, corresponding to a need of 0.22 kg K<sub>2</sub>O ac<sup>−1</sup> for a substantial yield. The review article highlights the significant use of potash fertilisers in the United States, with an average consumption of 4.43 million metric tons between 2010 and 2021, underscoring the importance of K in agricultural practices. The paper also highlights the difference in K requirement and removal among different potato varieties that require the maximum amount in processing types. This manuscript discusses K's management schemes through soil testing, plant tissue analysis and artificial intelligence. The integration of various machine-learning methods could offer promising prospects for predicting K response in potatoes, aiming to improve nutrient management and sustainable crop production. By synthesising current knowledge and advancements in K fertilisation techniques, this paper provides insights into overcoming the challenges of K management in potato cultivation, ultimately contributing to increased productivity and improved crop quality.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.12106","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141326678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}