The use of pesticides in agriculture is crucial for crop protection although it potentially poses risks to the environment and human health. This has led to European Union initiatives to reduce chemical pesticide inputs which has driven innovation for more environmentally sustainable solutions. Biostimulants, including silicon-based products, represent a promising strategy to improve crop growth and quality in horticultural crops, such as strawberries. This research investigates silicon-based biostimulants and their impact on production and disease control in strawberry crops.
Three commercial style trials were conducted in glasshouse and polytunnel growing environments to evaluate different silicon-based biostimulant (Si_bio) products and application methods against a standard pesticide and reduced pesticide programme.
The main findings of this research point to growing system having a major effect on strawberry production where biostimulants are used, with a positive effect of biostimulant use only noted in the polytunnel system. Our results show that although certain parameters responded positively to silicon-based biostimulant application, such as increases to total weight and total yield, these were only significant in a single trial. Where overall yield increases were detected, this did not result in an increase in marketable yield. Pesticides remain more effective than biostimulants in reducing disease incidence of the fungal diseases grey mould and powdery mildew.
The impact on most agronomic parameters was limited and inconsistent across trials, however this work expands our understanding of the effectiveness of silicon biostimulants in strawberry production and disease management.