Sustainable crop production is constrained by imbalanced fertilization and poor soil management, which lead to reduced soil fertility. Additionally, water hyacinth poses a major threat to Tana Lake by disrupting ecosystems and degrading water quality. A field experiment conducted in the Lake Tana Basin during the 2022/2023 cropping season aimed to assess the impact of combining water hyacinth compost and blended mineral fertilizer on soil properties and wheat yield attributes.
The study tested four rates of water hyacinth compost (0, 5, 10, 15 t ha⁻¹) and four rates of blended mineral fertilizer (0%, 50%, 75%, and 100% of NPSB recommended rates) in a randomized complete block design with triplicates. Data on soil properties and wheat yield were analyzed using SAS-JMP17 software.
The combined application of both fertilizers significantly (p < 0.05) improved the total nitrogen and agronomic attributes of wheat. The highest total nitrogen was achieved with 15 t ha⁻¹ of compost and full-rate blended fertilizer, while the highest soil reaction, organic carbon, and cation exchange capacity were observed with 15 t ha⁻¹ compost alone. The best wheat yield (4.15 t ha⁻¹) and net benefit (131,912.73 ETB ha⁻¹) were obtained with 15 t ha⁻¹ compost and full-rate blended fertilizer. Grain yield increased by 312.35% and 28.09% compared to the control and blanket recommendation of blended mineral fertilizer.
Using 15 t ha⁻¹ of compost with the full recommended rate of blended fertilizer enhances wheat production and provides a sustainable solution for managing invasive water hyacinth in similar regions.