Synergistic Effects of Water Hyacinth Compost and Blended Mineral Fertilizers on Key Soil Properties and Bread Wheat Yield

Matebie Muche, Yayeh Bitew, Yihenew G. Selassie, Ashenafei Gezahegn, Solomon Addisu, Shinjiro Sato
{"title":"Synergistic Effects of Water Hyacinth Compost and Blended Mineral Fertilizers on Key Soil Properties and Bread Wheat Yield","authors":"Matebie Muche,&nbsp;Yayeh Bitew,&nbsp;Yihenew G. Selassie,&nbsp;Ashenafei Gezahegn,&nbsp;Solomon Addisu,&nbsp;Shinjiro Sato","doi":"10.1002/sae2.70054","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>Sustainable crop production is constrained by imbalanced fertilization and poor soil management, which lead to reduced soil fertility. Additionally, water hyacinth poses a major threat to Tana Lake by disrupting ecosystems and degrading water quality. A field experiment conducted in the Lake Tana Basin during the 2022/2023 cropping season aimed to assess the impact of combining water hyacinth compost and blended mineral fertilizer on soil properties and wheat yield attributes.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The study tested four rates of water hyacinth compost (0, 5, 10, 15 t ha⁻¹) and four rates of blended mineral fertilizer (0%, 50%, 75%, and 100% of NPSB recommended rates) in a randomized complete block design with triplicates. Data on soil properties and wheat yield were analyzed using SAS-JMP17 software.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The combined application of both fertilizers significantly (<i>p</i> &lt; 0.05) improved the total nitrogen and agronomic attributes of wheat. The highest total nitrogen was achieved with 15 t ha⁻¹ of compost and full-rate blended fertilizer, while the highest soil reaction, organic carbon, and cation exchange capacity were observed with 15 t ha⁻¹ compost alone. The best wheat yield (4.15 t ha⁻¹) and net benefit (131,912.73 ETB ha⁻¹) were obtained with 15 t ha⁻¹ compost and full-rate blended fertilizer. Grain yield increased by 312.35% and 28.09% compared to the control and blanket recommendation of blended mineral fertilizer.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Using 15 t ha⁻¹ of compost with the full recommended rate of blended fertilizer enhances wheat production and provides a sustainable solution for managing invasive water hyacinth in similar regions.</p>\n </section>\n </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70054","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Agriculture and Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sae2.70054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

Sustainable crop production is constrained by imbalanced fertilization and poor soil management, which lead to reduced soil fertility. Additionally, water hyacinth poses a major threat to Tana Lake by disrupting ecosystems and degrading water quality. A field experiment conducted in the Lake Tana Basin during the 2022/2023 cropping season aimed to assess the impact of combining water hyacinth compost and blended mineral fertilizer on soil properties and wheat yield attributes.

Methods

The study tested four rates of water hyacinth compost (0, 5, 10, 15 t ha⁻¹) and four rates of blended mineral fertilizer (0%, 50%, 75%, and 100% of NPSB recommended rates) in a randomized complete block design with triplicates. Data on soil properties and wheat yield were analyzed using SAS-JMP17 software.

Results

The combined application of both fertilizers significantly (p < 0.05) improved the total nitrogen and agronomic attributes of wheat. The highest total nitrogen was achieved with 15 t ha⁻¹ of compost and full-rate blended fertilizer, while the highest soil reaction, organic carbon, and cation exchange capacity were observed with 15 t ha⁻¹ compost alone. The best wheat yield (4.15 t ha⁻¹) and net benefit (131,912.73 ETB ha⁻¹) were obtained with 15 t ha⁻¹ compost and full-rate blended fertilizer. Grain yield increased by 312.35% and 28.09% compared to the control and blanket recommendation of blended mineral fertilizer.

Conclusions

Using 15 t ha⁻¹ of compost with the full recommended rate of blended fertilizer enhances wheat production and provides a sustainable solution for managing invasive water hyacinth in similar regions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信