Girish Kumar Jha, Praveen Koovalamkadu Velayudhan, Toritseju Begho, Vera Eory, Arti Bhatia
{"title":"Intensity of synthetic and organic fertilizers use among Indian paddy growers: Determinants and implications for productivity and sustainability","authors":"Girish Kumar Jha, Praveen Koovalamkadu Velayudhan, Toritseju Begho, Vera Eory, Arti Bhatia","doi":"10.1002/sae2.70013","DOIUrl":"https://doi.org/10.1002/sae2.70013","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Nitrogen use efficiency (NUE) is lower for South Asia than for most other regions of the world, and average crop NUE is on the decline in India. This inefficient use of nitrogen fertilizers has implications for agricultural productivity and environmental sustainability.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>Using data from 14,669 farmers in India, this paper examined the determinants of synthetic fertilizer and manure adoption and intensity of use for rice (<i>Oryza sativa</i> L.) production. The latter was assessed through fertilizer expenditure rather than the traditional weight-based method. A double hurdle model was estimated.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The study showed that farmers' decisions to adopt fertilizer or manure and the decision on use intensity were independent. Both synthetic fertilizers and manure adoption were influenced by common drivers such as access to financial resources through instruments like the Kisan Credit Card and loans, expenditure on irrigation and labour, and geographical location. In terms of barriers, the likelihood of adoption of both synthetic fertilizer and manure was lower among landowners and paddy area cultivated. The intensity of fertilizer and manure use was higher for older farmers and was positively influenced by expenditure on labour but negatively influenced by ownership of livestock. Also, synthetic fertilizers and manure use intensity were determined by regional temperature and geographical zones.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>The results of this study are useful for targeted interventions to promote sustainable fertilizer use with a focus on following recommendations in zones or among demographic groups that are currently more likely to have a high intensity of use. Similarly, the findings inform support towards increased adoption and sustainable use where fertilizer is underutilised.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The rhizosphere bacterial community of water yam (Dioscorea alata L.) under limited water conditions","authors":"Shunta Kihara, Kosuke Yamamoto, Yuh Shiwa, Minenosuke Matsutani, Hidehiko Kikuno, Hironobu Shiwachi","doi":"10.1002/sae2.70009","DOIUrl":"https://doi.org/10.1002/sae2.70009","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Yam cultivation in West Africa, the largest yam production area, has expanded to the northern Guinea savanna, which receives an annual rainfall of 800–1000 mm. However, variations in rainfall are problematic for the stable productivity of yams. Integrated soil fertility management is urgently needed to improve and stabilise yam productivity. Plants have complex interactions with bacterial communities, influencing their health and environmental adaptability. Although the growth of water yams (<i>Dioscorea alata</i> L.) at various rainfall levels might be related to their interaction with the bacterial community, their structure under water limitation is yet to be elucidated. Here, we evaluated the bacterial community structure in the rhizosphere (Rh) and roots of ‘A-19’ under water limitation conditions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>Plants were grown under normal conditions, and watering was reduced to less than 70% for 1 month. Rh and root samples were collected for DNA extraction, and downstream amplicon sequencing analyses were performed.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The dry weight of the shoots, particularly the leaves, decreased under water limitation. Bacterial diversity in the rhizocompartments was significantly reduced. However, bacterial community composition was not affected by water limitation. Despite water-limited conditions, bacterial community structure was robust in the <i>Burkholderia-Caballeronia-Paraburkholderia</i> and <i>Streptomyces</i> clades. These taxa accounted for approximately 60% of the relative abundance in the roots under water limitation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>identifying bacterial community composition of ‘A-19’ under water-limited conditions provides fundamental information for developing integrated soil fertility management strategies across rainfall gradients in West Africa. Our study indicates that ‘A-19’ has a robust bacterial community structure for beneficial interactions with bacteria despite soil water conditions.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reduced ligninase-cellulase ratio enhances soil carbon sequestration following afforestation of agricultural land","authors":"Shuhai Wen, Dailin Yu, Jiao Feng, Yu-Rong Liu","doi":"10.1002/sae2.70010","DOIUrl":"https://doi.org/10.1002/sae2.70010","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Afforestation of agricultural land is one of the most essential approaches to mitigate climate change by enhancing the sequestration of atmospheric carbon (C) into the soil. C-degrading extracellular enzymes produced by soil microbes regulated the decomposition and fate of sequestrated soil organic carbon (SOC), with potential divergent variations following afforestation across different ecosystem scales. However, the feedbacks of different C-degrading enzymes and their relationships with SOC following afforestation of agricultural land remain unclear.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>We investigated the changes in enzyme activity and their relationships with SOC in soil aggregates across two typical climatic vegetation restoration regions in China, and explored the mechanisms through which changes in enzyme activity contribute to SOC sequestration following afforestation of agricultural land.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Afforestation of agricultural land generally decreased ligninase activity and increased cellulase activity across various aggregate fractions, compared to the adjacent croplands in both subtropic (Danjiangkou Reservoir, DJK) and temperate (Maoershan, MES) region. Additionally, the ratio of ligninase to cellulase (L:C) was lower in afforested lands than in the croplands, with L:C as the major factor explaining the variations of SOC sequestration following afforestation. Specifically, ligninase and L:C were negatively correlated with SOC, whereas cellulase showed positive correlations with SOC. Further analyses suggested that microbial biomass C and nitrogen (MBC and MBN) and the ratio of SOC and total nitrogen (SOC:TN) were important factors influencing L:C and subsequently regulating SOC. These results suggest that shifts in microbial enzyme production from ligninase to cellulase following afforestation, reduced the decomposition of recalcitrant C, thus contributing to SOC sequestration.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Our work underscores the critical role of reduced L:C in enhancing SOC sequestration following the restoration of croplands to afforested lands. These findings advance the understanding of the influence of microbial community physiological adaptations on C sequestration across different land use types.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancing effective methods for mitigating greenhouse gas emissions from rice (Oryza sativa L.) fields","authors":"Shubh Pravat Singh Yadav, Netra Prasad Ghimire, Prava Paudel, Dipesh Kumar Mehata, Sangita Bhujel","doi":"10.1002/sae2.70012","DOIUrl":"https://doi.org/10.1002/sae2.70012","url":null,"abstract":"<p>The implications of global warming present significant threats to both crop productivity and environmental sustainability. The global population greatly depends on rice as a staple food, contributing significantly to global warming and agricultural greenhouse gas (GHG) emissions. Agricultural soils play a crucial role in the release and uptake of essential GHGs, including methane (CH<sub>4</sub>), nitrous oxide (N<sub>2</sub>O), and carbon dioxide (CO<sub>2</sub>), serving as both sources and sinks within the agricultural ecosystem. Notably, rice fields alone account for approximately 30% and 11% of global CH<sub>4</sub> and N<sub>2</sub>O emissions from agricultural activities, respectively. As the demand for rice is expected to rise in the future, it becomes increasingly critical to address GHG emissions and minimise the detrimental environmental effects associated with rice production. This review provides a comprehensive synthesis of the available data regarding the influence of different crop management practices on GHG emissions in rice fields. We recognise the substantial potential for reducing GHG emissions through modifications in traditional crop management systems. Our analysis evaluates various options, such as adjustments in cropping practices, regulation of organic and fertiliser inputs, management of tillage techniques and irrigation strategies, and the selection of suitable cultivars, all of which can contribute to GHG emission reduction. It is crucial to consider that changes in management practices may have simultaneous and sometimes contradictory effects on different gases through various mechanisms. Therefore, our comprehensive evaluation aims to assess the potential global warming impact of each approach, considering the magnitude of their effects on all gases. This assessment seeks to identify suitable crop management practices that effectively reduce GHG emissions in rice cultivation while considering the overall environmental impact.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Bi, Zi-Yang He, Bao Anh Thi Nguyen, Lok Hang Chan, Shuo Na, Ji-Zheng He, Hang-Wei Hu
{"title":"Influence of climate on soil viral communities in Australia on a regional scale","authors":"Li Bi, Zi-Yang He, Bao Anh Thi Nguyen, Lok Hang Chan, Shuo Na, Ji-Zheng He, Hang-Wei Hu","doi":"10.1002/sae2.70008","DOIUrl":"https://doi.org/10.1002/sae2.70008","url":null,"abstract":"<p>Viruses play a crucial role in regulating microbial communities and ecosystem functioning. However, the biogeographic patterns of viruses and their responses to climate factors remain underexplored. In this study, we performed viral size fraction metagenomes on 108 samples collected along a 2600 km transect across Australia, encompassing distinct climate conditions. A total of 14,531 viral operational taxonomic units were identified. Climate factors had a greater influence than edaphic and biotic factors on driving the alpha diversity of viral communities. The strongest relationship was observed between mean annual temperature and the diversity of viral communities. Moreover, climate factors, particularly aridity index, were the primary drivers of viral community structure. Overall, these findings underscore the pivotal role of climate factors in shaping viral communities and have implications for understanding how climate change influences soil viral ecology.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Samphire, David R. Chadwick, Davey L. Jones
{"title":"Biodegradable plastic film mulch increases the mineralisation of organic amendments and prevents nitrate leaching during the growing season in organic vegetable production","authors":"Martin Samphire, David R. Chadwick, Davey L. Jones","doi":"10.1002/sae2.70007","DOIUrl":"https://doi.org/10.1002/sae2.70007","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Organic vegetable production relies on inputs of organic forms of nitrogen (N). This presents a challenge as it needs to be mineralised by the soil microbial community. Difficulties matching the timing and rate of organic N amendments to crop demand could potentially lead to high rates of nitrate leaching. The use of plastic film mulch (PFM) has the potential to increase crop yield, accelerate N mineralisation, reduce rainfall infiltration and therefore N leaching. Biodegradable PFM reduces the risk of contaminating soil with plastics. Although these positive effects have been proven in major conventionally grown commodity crops, the effects of PFMs are poorly understood in organic vegetable crops, particularly in moist temperate climates prone to N losses via winter leaching.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials & Methods</h3>\u0000 \u0000 <p>Our plot-scale field experiment attempted to quantify the effect of biodegradable PFM on N leaching and N mineralisation in organic lettuce production in the presence and absence of biodegradable PFM. It took place in one season within a longer-term experimental organic vegetable rotation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We used two methods to measure the rate of carbon and N mineralisation: the buried bag method showed biodegradable PFM resulted in no additional N mineralisation; however, the ion exchange membrane method indicated an increase in N mineralisation of 30%. During heavy rainfall at the end of the growing season, nitrate leaching was observed only in the non-PFM plots, leading to N losses equivalent to 6.3 g N m<sup>−2</sup>. This led to surplus mineral N at harvest of 18.1 g N m<sup>−2</sup> in the PFM treatment and 8.6 g N m<sup>−2</sup> in the corresponding unmulched plots. This did not lead to more leaching in the mulched plots in the following 6 months.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>In conclusion, our evidence supports the use of biodegradable PFMs to enhance the sustainability of organic vegetable production systems in temperate climates.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Psyllium husk mucilage as a novel seed encapsulant for agriculture and reforestation","authors":"Cameron Dingley, Peter Cass, Benu Adhikari, Prajakta Bendre, Nitin Mantri, Fugen Daver","doi":"10.1002/sae2.70004","DOIUrl":"https://doi.org/10.1002/sae2.70004","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>An efficient, economical, and flexible reforestation system capable of uncrewed aerial vehicle (UAV) deployment is a global necessity. Hydrogels have been previously investigated for their use in agriculture, however, research is limited in terms of UAV deployment. Psyllium Husk Mucilage (PHM) a natural hydrogel seed mucilage, has been previously investigated in other agricultural settings and shows promise in fulfilling the needs of UAV seeding.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>A greenhouse trial was conducted under controlled laboratory conditions using two soil conditions 50% and 90% field capacity. PHM and bentonite clay blends containing dextran (DEX) and sodium alginate (SA) were tested for efficacy for two agricultural crops Green beans (<i>Phaseolus vulgaris</i>) and Lebanese cucumber (<i>Cucumis sativus</i>), as well as three Australian native species <i>Acacia stenophylla</i>, <i>Cymbopogon refractus</i>, and <i>Eucalyptus coolabah</i>. Agricultural Trials were conducted across a 4-week period, whilst <i>A. stenophylla</i> was 8 weeks, and <i>C. refractus</i> and <i>E. coolabah</i> was 12 weeks.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Utilisation of PHM had varying effectiveness based on seed and soil moisture. In nonagricultural seed trials, PHM hydrogel succeeded with <i>A. stenophylla</i> but dried out and rotted in the extended trials with <i>C. refractus</i> and <i>E. Coolabah</i>, leading to plant death. The encapsulated agricultural seeds were largely outperformed in growth trials by C-Planted at 50% FC, and C-Surface at 90% FC.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>PHM exhibits potential for successful UAV seeding in low-moisture agricultural conditions and is promising for fast-germinating plants or other riverbank species with high water content requirements. Without extending degradation time PHM is not suitable for slow-growing species.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rita Kusmiati, Yolani Syaputri, Abun, Ratu Safitri
{"title":"Pretreatment and fermentation of lignocellulose from oil palm fronds as a potential source of fibre for ruminant feed: a review","authors":"Rita Kusmiati, Yolani Syaputri, Abun, Ratu Safitri","doi":"10.1002/sae2.70003","DOIUrl":"https://doi.org/10.1002/sae2.70003","url":null,"abstract":"<p>Oil palm fronds are plantation waste widely available in large quantities and have great potential as a source of ruminant feed due to their high fibre content. However, the lignocellulose content can inhibit feed digestion. This review examines methods that can reduce the lignocellulose content and improve the nutritional quality of palm fronds. The lignin content of palm fronds ranges from 17% to 20%, while the maximum lignin content in ruminant feed is 7%. Processing processes such as pretreatment are needed to reduce the lignocellulose content. Pretreatment can be done physically, chemically, biologically or in combination with other methods. Physical pretreatment aims to reduce the size of lignocellulose, chemical pretreatment seeks to break the crystallinity structure of lignocellulose with chemical solutions such as acids or alkalis, and biological pretreatment degrades the structure of lignocellulose with the help of enzymes produced by microbes. The protein content of palm fronds also does not meet the feed standard, which is only 5%, while according to Indonesian national standards, ruminant feed, especially cattle, must have a minimum protein content of 14%. Therefore, it is necessary to improve the nutritional quality of palm fronds through fermentation methods. The selection of the right microbes is the main factor in the success of increasing nutrition. The SSF fermentation method is frequently used in feed manufacturing. By synthesizing the current knowledge, this review also highlights the challenges of the pretreatment process as well as solutions that include prospects in the research of palm fronds as ruminant feed, which in turn can contribute to the increased utilization of lignocellulosic waste as animal feed.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayomide Emmanuel Fadiji, Chao Xiong, Eleonora Egidi, Brajesh K. Singh
{"title":"Formulation challenges associated with microbial biofertilizers in sustainable agriculture and paths forward","authors":"Ayomide Emmanuel Fadiji, Chao Xiong, Eleonora Egidi, Brajesh K. Singh","doi":"10.1002/sae2.70006","DOIUrl":"https://doi.org/10.1002/sae2.70006","url":null,"abstract":"<p>Sustainable increase in agriculture productivity is confronted by over-reliance and over-use of synthetic chemical fertilizers. With a market projection of $5.02 billion by 2030, biofertilizers are gaining momentum as a supplement and, in some cases, as an alternative to chemical fertilizers. Biofertilizers can improve the nutritional supply to the plant and simultaneously can improve soil health, reduce greenhouse emissions, and hence directly contribute towards environmental sustainability. Plant growth-promoting microbes (PGPMs) are particularly receiving significant attention as biofertilizers. They are widely known for their ability to improve plant growth via increasing nutrient availability and use efficiency. However, except for a few successful cases, the commercialization of PGPM-based inoculants is still limited, mainly due to lack of field efficacy and consistency. Lack of effective formulation technologies that keep microbial inoculants viable during storage, transport and field application is considered one of the key factors that drive inconsistent efficacy of microbial biofertilizers. In this review, we identify current challenges associated with the application and formulation of microbial inoculants. We propose future paths, including advancement in formulation technologies that are potentially efficient, eco-friendly and cost-effective. We argue that to enhance the global adoption of biofertilizers, new innovations based on transdisciplinary approaches are indispensable. The emerging framework should encompass a robust quality control system at all stages. Additionally, the active partnership between the academic and industry stakeholders will pave the way for enhanced global adoption of microbial fertilizers.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dale R. Wright, Ascelin Gordon, Ruth E. Bennett, Matthew J. Selinske, Pia E. Lentini, Georgia E. Garrard, Amanda D. Rodewald, Sarah A. Bekessy
{"title":"Biodiverse coffee plantations provide co-benefits without compromising yield","authors":"Dale R. Wright, Ascelin Gordon, Ruth E. Bennett, Matthew J. Selinske, Pia E. Lentini, Georgia E. Garrard, Amanda D. Rodewald, Sarah A. Bekessy","doi":"10.1002/sae2.70005","DOIUrl":"https://doi.org/10.1002/sae2.70005","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Coffee is a ubiquitous global commodity that is cultivated with a wide range of practices, each with different, yet poorly understood trade-offs between management intensity, yield, and biodiversity. For example, monocultures prioritise coffee production, but do not necessarily deliver the highest coffee yields, nor the greatest profits. Understanding these trade-offs is key to informing sustainable coffee production.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We synthesized the literature on these relationships, finding that agroforestry farming systems support greater biodiversity while often producing coffee yields that are comparable to monoculture systems.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Over half of studies (57%) failed to detect a trade-off between yield and biodiversity in agroforestry systems. Of the 16 cases that investigated pollinators and yield, 85% showed a positive relationship. Farm proximity to natural forests also improved both biodiversity outcomes and coffee yields.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Studies in our data set revealed that agroforestry systems can deliver additional ecosystem services including carbon sequestration and pest control, with economic benefits accrued through income diversification and improvements to coffee bean quality. Our results illustrate how agroforestry systems within the coffee sector can return positive socio-ecological outcomes.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}