Journal of Sustainable Agriculture and Environment最新文献

筛选
英文 中文
Soil Bacterial Biodiversity in Drylands Is Dependent on Groundcover Under Increased Temperature 在温度升高的条件下,旱地土壤细菌生物多样性取决于地被植物
Journal of Sustainable Agriculture and Environment Pub Date : 2024-11-26 DOI: 10.1002/sae2.70027
Jana Stewart, Nathali Machado de Lima, Richard Kingsford, Miriam Muñoz-Rojas
{"title":"Soil Bacterial Biodiversity in Drylands Is Dependent on Groundcover Under Increased Temperature","authors":"Jana Stewart,&nbsp;Nathali Machado de Lima,&nbsp;Richard Kingsford,&nbsp;Miriam Muñoz-Rojas","doi":"10.1002/sae2.70027","DOIUrl":"https://doi.org/10.1002/sae2.70027","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Drylands are a major terrestrial biome, supporting much of the earth's population. Soil microbial communities maintain drylands’ ecosystem functions but are threatened by increasing temperature. Groundcover, such as vegetation or biocrust, drives the patchiness of drylands' soil microbial communities, reflected in fertile islands and rhizosphere soil microbial associations. Groundcover may shelter soil microbial communities from increasingly harsh temperatures under climate change, mitigating effects on microclimate, but few data on the microbial response exists. Understanding the fine-scale interactions between plants and soil is crucial to improving conservation and management of drylands under climate change.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>We used open-top chambers to experimentally increase the temperature on five key groundcover species found in arid Australia, and are commonly present in drylands worldwide; bareground (controls), biocrust, perennial grass, <i>Maireana sp</i>. shrub, <i>Acacia aneura</i> trees, testing soil bacterial diversity and community composition response to the effects of increased temperatures.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We found that groundcover was a stronger driver of soil bacterial composition than increased temperature, but this response varied with groundcover type. Larger groundcover types (<i>Acacia</i> and <i>Maireana</i>) buffered the impact of heat stress on the soil bacterial community. Bacterial diversity and species richness declined with heat stress affecting the bacterial communities associated with perennial grass, <i>Maireana</i> and <i>Acacia</i>. We identified 16 bacterial phyla significantly associated with groundcover types in ambient treatment. But, under heat stress, only three phyla, Verrumicrobiota, Patescibacteria, and Abditibacteriota, had significantly different relative abundance under groundcovers, <i>Acacia</i> and <i>Maireana</i>, compared to bareground controls. The soil bacterial community associated with perennial grass was most affected by increased temperature.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Our findings suggest soil communities may become more homogeneous under climate change, with compositional change, rather than diversity, tracking soil response to heat stress.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil Health to Enhance Ecological Restoration and Conservation 保持土壤健康,加强生态恢复和保护
Journal of Sustainable Agriculture and Environment Pub Date : 2024-11-21 DOI: 10.1002/sae2.70022
Paola Raupp, Yolima Carrillo, Uffe N. Nielsen
{"title":"Soil Health to Enhance Ecological Restoration and Conservation","authors":"Paola Raupp,&nbsp;Yolima Carrillo,&nbsp;Uffe N. Nielsen","doi":"10.1002/sae2.70022","DOIUrl":"https://doi.org/10.1002/sae2.70022","url":null,"abstract":"<p>Ecological restoration has gained increased attention to combat the global biodiversity and habitat loss driven by human activities and climate change. To address these impacts, restoration efforts apply interventions aimed at recovering native ecosystems on degraded lands. However, they tend to centre on vegetation-based interventions, with limited attention to aboveground and belowground linkages. Soil health, including its physicochemical, biological and functional attributes, is fundamental to ecosystem resilience and sustainability, provision of services, and human well-being. This synthesis explores how a deeper understanding of soil-vegetation interactions can support restoration and conservation efforts. We discuss how restoration interventions can be applied from early to later stages of restoration, future directions and novel approaches that target aboveground and belowground processes to promote soil health and successful plant community establishment. We propose that integrating practices that explicitly consider linkages among vegetation, soil properties and biota can lead to more effective restoration outcomes and the establishment of resilient, self-sustaining ecosystems.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative Regenerative Technologies for Enhancing Resilience in Salinity-Stressed Rice Fields Along the Indonesian Coast: Promoting Net-Zero Farming Practices to Adapt to Climate Change 提高印度尼西亚沿海盐碱地稻田恢复能力的创新再生技术:推广零净农业实践以适应气候变化
Journal of Sustainable Agriculture and Environment Pub Date : 2024-11-21 DOI: 10.1002/sae2.70026
Irwandhi Irwandhi, Fiqriah Hanum Khumairah, Emma Trinurani Sofyan, Ukit Ukit, Rievansyah Eka Satria, Annisya Salsabilla, Muhamad Sopyan Sauri, Tualar Simarmata
{"title":"Innovative Regenerative Technologies for Enhancing Resilience in Salinity-Stressed Rice Fields Along the Indonesian Coast: Promoting Net-Zero Farming Practices to Adapt to Climate Change","authors":"Irwandhi Irwandhi,&nbsp;Fiqriah Hanum Khumairah,&nbsp;Emma Trinurani Sofyan,&nbsp;Ukit Ukit,&nbsp;Rievansyah Eka Satria,&nbsp;Annisya Salsabilla,&nbsp;Muhamad Sopyan Sauri,&nbsp;Tualar Simarmata","doi":"10.1002/sae2.70026","DOIUrl":"https://doi.org/10.1002/sae2.70026","url":null,"abstract":"<p>Rice cultivation significantly contributes to greenhouse gas (GHG) emissions, particularly methane released from flooded paddy fields, exacerbating climate change. At the same time, rice farming is highly sensitive to climate conditions, with climate change introducing various abiotic stresses, notably salinity stress. This is especially critical in coastal regions like Indonesia, where rising sea levels and land degradation worsen the salinity challenge. This review systematically examines salinity stress in coastal rice cultivation, the impact of climate change on salinity dynamics and crop performance, and the potential of innovative regenerative technologies to enhance resilience and create low-salinity, net-zero agricultural systems. We conducted a systematic literature review following PRISMA guidelines, supplemented by a bibliometric analysis using Scopus, employing keywords such as “salinity stress”, “rice”, “agriculture”, “climate change” and “regenerative”. From an initial 2,191 articles, 18 were deemed eligible for further analysis. Findings indicate that increased soil salinity adversely affects rice production, yet innovative strategies such as rhizomicrobiome engineering, salt-tolerant rice varieties, regenerative soil amendments, irrigation management, agricultural practices offer viable solutions to mitigate salinity stress. Furthermore, adopting net-zero farming practices can help achieve carbon neutrality in agriculture while significantly reducing GHG emissions. This review highlights the need for a collaborative approach among scientists, farmers, and policymakers to scale these innovations, ensuring their implementation not only in Indonesia but also in other regions facing similar challenges, thereby promoting food security and environmental sustainability in the face of climate change.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irrigation and Water Management of Tomatoes–A Review 番茄的灌溉和水分管理--综述
Journal of Sustainable Agriculture and Environment Pub Date : 2024-11-21 DOI: 10.1002/sae2.70020
Olabisi Tolulope Somefun, Blessing Masasi, Anuoluwapo Omolola Adelabu
{"title":"Irrigation and Water Management of Tomatoes–A Review","authors":"Olabisi Tolulope Somefun,&nbsp;Blessing Masasi,&nbsp;Anuoluwapo Omolola Adelabu","doi":"10.1002/sae2.70020","DOIUrl":"https://doi.org/10.1002/sae2.70020","url":null,"abstract":"<p>Effective water management practices are essential for maximising tomato yield while mitigating the risks associated with climate change. The need for climate-smart irrigation management techniques in agriculture has increased to optimise water use efficiency and enhance crop productivity. Irrigation scheduling using precision agriculture technologies like soil moisture sensors is an effective and efficient water management strategy in crop production. This strategy helps growers apply the right amount of water at the right time to meet crop needs, thus reducing water wastage and increasing environmental sustainability. Combining soil moisture sensors and crop simulation models for real-time irrigation scheduling can enhance water use efficiency while reducing operations, energy costs, and labour in crop production. Therefore, this study provides a comprehensive review of the current efforts to improve irrigation management by integrating precision agriculture technologies such as soil moisture sensors, plant sensors, and crop models for irrigation scheduling in tomato production.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Positive Effects of Soil Organic Carbon on European Cereal Yields Level Off at 1.4% 土壤有机碳对欧洲谷物产量的积极影响降至 1.4
Journal of Sustainable Agriculture and Environment Pub Date : 2024-11-14 DOI: 10.1002/sae2.70017
Ana Campos-Cáliz, Enrique Valencia, César Plaza, Gina Garland, Anna Edlinger, Chantal Herzog, Marcel G. A. van der Heijden, Samiran Banerjee, Matthias C. Rillig, Sara Hallin, Aurélien Saghaï, Fernando T. Maestre, David S. Pescador, Laurent Philippot, Ayme Spor, Sana Romdhane, Pablo García-Palacios
{"title":"The Positive Effects of Soil Organic Carbon on European Cereal Yields Level Off at 1.4%","authors":"Ana Campos-Cáliz,&nbsp;Enrique Valencia,&nbsp;César Plaza,&nbsp;Gina Garland,&nbsp;Anna Edlinger,&nbsp;Chantal Herzog,&nbsp;Marcel G. A. van der Heijden,&nbsp;Samiran Banerjee,&nbsp;Matthias C. Rillig,&nbsp;Sara Hallin,&nbsp;Aurélien Saghaï,&nbsp;Fernando T. Maestre,&nbsp;David S. Pescador,&nbsp;Laurent Philippot,&nbsp;Ayme Spor,&nbsp;Sana Romdhane,&nbsp;Pablo García-Palacios","doi":"10.1002/sae2.70017","DOIUrl":"https://doi.org/10.1002/sae2.70017","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Increasing soil organic carbon (SOC) in croplands is a natural climate mitigation effort that can also enhance crop yields. However, there is a lack of comprehensive field studies examining the impact of SOC on crop yields across wide climatic, soil, and farming gradients. Furthermore, it is largely unknown how water retention, soil microbial diversity, and nutrient availability modulate the SOC-crop yield relationship.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>We conducted an observational study across 127 cereal fields along a 3000 km north-south gradient in Europe, measured topsoil (0–20 cm) organic C content, and collected data on climate, soil properties, crop yield and farming practices. Additionally, we explored the relationship between crop yield, particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) contents at three soil depths (0–20, 20–40 and 40–60 cm) in a subset of sites.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Relative yield increases levelled off at 1.4% SOC, indicating an optimal SOC content for cereals along a European gradient. The quadratic relationship between SOC and cereal yield was conspicuous even after controlling for large differences in climate, soil and farming practices across countries. The relationship varied significantly across soil depths and C fractions. MAOC dominated the SOC pool, and was significantly related to relative yield up to an optimal level that varied with soil depth. Soil microbial diversity and nutrient availability emerged as main drivers of the SOC-yield relationship, while water retention did not exhibit a notable influence.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Our study demonstrates that SOC is as a key determinant of cereal yield along a European gradient, and identifying this threshold can inform soil management strategies for improved carbon capture based on initial SOC levels. Nevertheless, the complex SOC-yield relationship highlights the necessity for tailored soil management strategies that consider specific site conditions to optimize C storage and crop yield.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enteric Methane Production, Yield, and Intensity in Smallholder Dairy Farming Systems in Peri-Urban Areas of Coastal West African Countries: Case Study of Benin 西非沿海国家城市周边地区小农奶牛养殖系统的肠道甲烷生产、产量和强度:贝宁案例研究
Journal of Sustainable Agriculture and Environment Pub Date : 2024-11-11 DOI: 10.1002/sae2.70019
Fifame Panine Yassegoungbe, Gaius Segbegnon Vihowanou, Tawakalitu Onanyemi, Mohamed Habibou Assouma, Eva Schlecht, Luc Hippolyte Dossa
{"title":"Enteric Methane Production, Yield, and Intensity in Smallholder Dairy Farming Systems in Peri-Urban Areas of Coastal West African Countries: Case Study of Benin","authors":"Fifame Panine Yassegoungbe,&nbsp;Gaius Segbegnon Vihowanou,&nbsp;Tawakalitu Onanyemi,&nbsp;Mohamed Habibou Assouma,&nbsp;Eva Schlecht,&nbsp;Luc Hippolyte Dossa","doi":"10.1002/sae2.70019","DOIUrl":"https://doi.org/10.1002/sae2.70019","url":null,"abstract":"<p>Enteric methane (eCH4) is a major environmental pollutant emitted by ruminants. To target mitigation measures, it is necessary to accurately estimate GHG emissions from livestock farming. Until now, milk-producing farms in the peri-urban areas of South Benin are pasture-based systems, and have been largely neglected by international research. Therefore, this study estimates eCH4 emissions from pasture-based peri-urban dairy farms across four different animal categories during dry and wet seasons. Six herds were selected for field measurements; one representative animal was selected per category from each herd and its body weight estimated. Subsequently, the selected animals were closely monitored on pasture for three consecutive days. Direct observation of their behavior and the hand-plucking method were used to mimic the animals' selective foraging and to sample parts of the different plant species consumed in proportion to their, to determine the quality of their daily diet. The nutrient content and digestibility of the collected feed samples were assessed using near-infrared spectroscopy. Additionally, 30 herds were monitored bi-monthly during a 12-month period to collect all input and output data, including milk yields. Annual enteric methane (eCH4) emissions per animal category were estimated using the IPCC Tier 2 method. Subsequently, the eCH4 intensities of lactating cows were calculated per kg of fat-protein corrected milk (FPCM). All statistical analyses were performed using R software. Overall, the average annual eCH4 production was 40.6 kg/head/year and the eCH4 yield was 20.3 g/kg of dry matter intake, with significant differences between seasons and no differences between animal categories. Regardless of season, older animals yielded higher eCH4 outputs. The average eCH4 production per kg of live weight was 0.48 g for both seasons. The overall eCH4 intensity (g CH4/kg FPCM) recorded during the wet season (74.3) was higher than that recorded during the dry season (70.5).</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating Anaerobic Digestion With Struvite Production for Enhanced Nutrient Recovery, Pathogen Reduction, and Circularity in Manure Management 将厌氧消化与硬石膏生产结合起来,加强粪便管理中的养分回收、病原体减少和循环性
Journal of Sustainable Agriculture and Environment Pub Date : 2024-11-11 DOI: 10.1002/sae2.70018
Anita Nagarajan, Bernard Goyette, Vijaya Raghavan, Dominic Poulin-Laprade, Rajinikanth Rajagopal
{"title":"Integrating Anaerobic Digestion With Struvite Production for Enhanced Nutrient Recovery, Pathogen Reduction, and Circularity in Manure Management","authors":"Anita Nagarajan,&nbsp;Bernard Goyette,&nbsp;Vijaya Raghavan,&nbsp;Dominic Poulin-Laprade,&nbsp;Rajinikanth Rajagopal","doi":"10.1002/sae2.70018","DOIUrl":"https://doi.org/10.1002/sae2.70018","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Anaerobic digestion (AD) is essential for manure management, generating biogas and nutrient-rich digestate for organic fertilizer. However, improper digestate use can pose environmental risks. Recovering struvite, a magnesium ammonium phosphate (MAP) compound, from digestate provides a sustainable, controlled-release fertilizer, supporting a circular economy in agriculture.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>The study employed a two-stage (liquid–solid) AD process using poultry, dairy, and swine manures, along with wasted corn silage. Digestates were sampled for physicochemical and biogas quality analyses, with feedstocks categorized into D1 and D2, and a composite (D3) formed for struvite characterization. Microbial populations were enumerated on selective media, and struvite mineral content was analysed via argon plasma emission spectrometry.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The digesters processing feedstock mixtures D1 and D2 achieved specific methane yields of 1.26 L/g CODs fed and 1.49 L/g CODs fed, with cumulative biogas production of 374 and 369 L, respectively, over four 77-day cycles. The two-stage AD process significantly reduced antibiotic-resistant, <i>Enterobacteriaceae</i> and <i>Enterococcus</i> spp. Total ammoniacal nitrogen (TAN) recovery rates were high at 98%–99%, with a consistent struvite crystal mass of 0.67 g/10 mL, indicating the efficiency of this integrated process. The agronomic value of struvite was determined, indicating its potential utility as a fertilizer, and scanning electron microscopy analysis revealed diverse crystal structures, warranting further investigation into their implications for usage and storage.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>The results suggests that the two-stage AD process efficiently transforms organic waste into high-quality biogas, reduces antibiotic-resistant bacteria, and facilitates nutrient recovery through struvite precipitation. This approach supports co-digestion of multi-substrates and promotes circular economy principles, with potassium or sodium phosphate enhancing struvite recovery for sustainable agriculture.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of Fermented Kiwifruit on Morpho-Physiological and Productive Performances of Fragaria spp Plants, Grown Under Hydroponic Conditions 评估发酵猕猴桃对水培条件下种植的 Fragaria spp 植物的形态-生理和生产性能的影响
Journal of Sustainable Agriculture and Environment Pub Date : 2024-11-11 DOI: 10.1002/sae2.70024
Samreen Nazeer, Anna Agosti, Lorenzo Del Vecchio, Leandra Leto, Andrea Di Fazio, Jasmine H. Saadoun, Alessia Levante, Camilla Lazzi, Martina Cirlini, Benedetta Chiancone
{"title":"Assessment of Fermented Kiwifruit on Morpho-Physiological and Productive Performances of Fragaria spp Plants, Grown Under Hydroponic Conditions","authors":"Samreen Nazeer,&nbsp;Anna Agosti,&nbsp;Lorenzo Del Vecchio,&nbsp;Leandra Leto,&nbsp;Andrea Di Fazio,&nbsp;Jasmine H. Saadoun,&nbsp;Alessia Levante,&nbsp;Camilla Lazzi,&nbsp;Martina Cirlini,&nbsp;Benedetta Chiancone","doi":"10.1002/sae2.70024","DOIUrl":"https://doi.org/10.1002/sae2.70024","url":null,"abstract":"<p>Climate change poses a significant threat to global agriculture by altering weather patterns, increasing the frequency of extreme events, and reducing the availability of arable land. Hydroponic systems offer a sustainable solution allowing efficient resource use, including water and nutrients, and enabling cultivation in areas with poor soil quality or limited space. The incorporation of biostimulants derived from plant byproducts further enhances sustainability by improving plant growth and resilience, reducing the use of synthetic fertilizers and the environmental footprint of agriculture, promoting, at the same time, healtier crop production. This study investigates the effect of biostimulants, derived from fermented kiwifruit byproducts, on the morpho-physiological and productive performances of <i>Fragaria vesca</i> (L.), cv. Malga, and of <i>Fragaria x ananassa</i> (Duch.), cv. Annabelle, grown in a column hydroponic system. Plants of both species, when treated with the biostimulant, demonstrated significant improvements for all the parameters evaluated, with healthier plants and improved quality features in fruits. These findings suggest that fermented kiwi byproduct could be an effective, sustainable integration to synthetic fertilizers, promoting better growth and fruit quality in strawberry cultivation under hydroponic systems.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant Agrobiodiversity, Agricultural and Phytosanitary Practices of Market Garden Crops in the Centre-East Region of Burkina Faso 布基纳法索中东部地区市场花园作物的植物农业生物多样性、农业和植物检疫措施
Journal of Sustainable Agriculture and Environment Pub Date : 2024-11-06 DOI: 10.1002/sae2.70016
Issouf Zerbo, Kounbo Dabiré, Sibiry Albert Kaboré, Constant Martin Sawadogo, Adjima Thiombiano
{"title":"Plant Agrobiodiversity, Agricultural and Phytosanitary Practices of Market Garden Crops in the Centre-East Region of Burkina Faso","authors":"Issouf Zerbo,&nbsp;Kounbo Dabiré,&nbsp;Sibiry Albert Kaboré,&nbsp;Constant Martin Sawadogo,&nbsp;Adjima Thiombiano","doi":"10.1002/sae2.70016","DOIUrl":"https://doi.org/10.1002/sae2.70016","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>In West Africa, market gardeners use various agricultural practices to increase yields. However, many of these practices do not comply with agroecological standards and cause intoxication, pollution, soil degradation and biodiversity loss. This study characterizes the plant agrobiodiversity of market garden crops grown during the rainy season and the agricultural and phytosanitary practices used for their management.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>The study was carried out in Burkina Faso. Plant agrobiodiversity was assessed in 100 market gardens. Agricultural and phytosanitary practices were characterized using semi-structured interviews. A Sankey diagram was used to highlight the relationships among market garden crops, bioaggressors and diseases. Principal component analyses were applied to highlight the agricultural and phytosanitary practices used.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The results revealed rich agrobiodiversity, including 16 market garden crops, 15 local agroforestry species, 17 planted species and 37 weed species. The main market garden crops grown in the rainy season were cabbage (20.30%), lettuce (16.62%), tomato (11.69%), and amaranth (10.15%). The most frequent agroforestry species were <i>Azadirachta indica</i> (18.20%) and <i>Mangifera indica</i> (15.03%). The most common weeds were <i>Eleusine indica</i> (11.02%) and <i>Cyperus reduncus</i> (9.70%). Eleven pests were identified, and the most frequently recorded were caterpillars (39.06%). Sixteen diseases were reported, the most common being leaf yellowing (15.67%) and leaf wilt (11.67%). Numerous market gardeners use mineral fertilizers such as Yaramila (NPK 23-10-5), NPK (14-23-14), urea (46.00% nitrogen), and liquid fertilizer as well as compost and organic manure. The most common agricultural practice was crop rotation (79.00%). To protect crops, 89.00% of producers used synthetic chemical pesticides in an uncontrolled manner, most of which are purchased on the local market. Only 11.00% of the market gardeners practiced the natural phytosanitary treatments.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>This study provides important information that can be used for the sustainable management of market gardens. Agroecological standards should be popularized to ensure food security for market garden crops.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Threat of Human Pathogens in Farmlands: A One Health Perspective 农田中人类病原体的威胁:一个健康视角
Journal of Sustainable Agriculture and Environment Pub Date : 2024-11-06 DOI: 10.1002/sae2.70023
Gaofei Jiang, Xinrun Yang, Thomas Pommier, Yangchun Xu, Qirong Shen, Zhong Wei
{"title":"Threat of Human Pathogens in Farmlands: A One Health Perspective","authors":"Gaofei Jiang,&nbsp;Xinrun Yang,&nbsp;Thomas Pommier,&nbsp;Yangchun Xu,&nbsp;Qirong Shen,&nbsp;Zhong Wei","doi":"10.1002/sae2.70023","DOIUrl":"https://doi.org/10.1002/sae2.70023","url":null,"abstract":"<p>A key aspect of “One Health” is to recognize that environmental health and human health are inseparable. In this interconnected network, farmland plays a crucial role, as it serves as a link connecting various ecosystems. However, the threat of human pathogens in farmlands is often overlooked despite growing evidence highlighting its importance as a pressing public health concern via direct and indirect pathways. To address this issue, we advocate the adoption of a “One Health” approach, which relies on strengthening the development of detection tools and emphasizing the importance of sustainable agricultural practices aimed at enhancing soil biodiversity. By doing so, we can effectively disrupt the transmission source and mitigate the risks posed by human pathogens in agricultural ecosystems, ultimately safeguarding both human health and agricultural sustainability.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信