{"title":"Innovative Regenerative Technologies for Enhancing Resilience in Salinity-Stressed Rice Fields Along the Indonesian Coast: Promoting Net-Zero Farming Practices to Adapt to Climate Change","authors":"Irwandhi Irwandhi, Fiqriah Hanum Khumairah, Emma Trinurani Sofyan, Ukit Ukit, Rievansyah Eka Satria, Annisya Salsabilla, Muhamad Sopyan Sauri, Tualar Simarmata","doi":"10.1002/sae2.70026","DOIUrl":"https://doi.org/10.1002/sae2.70026","url":null,"abstract":"<p>Rice cultivation significantly contributes to greenhouse gas (GHG) emissions, particularly methane released from flooded paddy fields, exacerbating climate change. At the same time, rice farming is highly sensitive to climate conditions, with climate change introducing various abiotic stresses, notably salinity stress. This is especially critical in coastal regions like Indonesia, where rising sea levels and land degradation worsen the salinity challenge. This review systematically examines salinity stress in coastal rice cultivation, the impact of climate change on salinity dynamics and crop performance, and the potential of innovative regenerative technologies to enhance resilience and create low-salinity, net-zero agricultural systems. We conducted a systematic literature review following PRISMA guidelines, supplemented by a bibliometric analysis using Scopus, employing keywords such as “salinity stress”, “rice”, “agriculture”, “climate change” and “regenerative”. From an initial 2,191 articles, 18 were deemed eligible for further analysis. Findings indicate that increased soil salinity adversely affects rice production, yet innovative strategies such as rhizomicrobiome engineering, salt-tolerant rice varieties, regenerative soil amendments, irrigation management, agricultural practices offer viable solutions to mitigate salinity stress. Furthermore, adopting net-zero farming practices can help achieve carbon neutrality in agriculture while significantly reducing GHG emissions. This review highlights the need for a collaborative approach among scientists, farmers, and policymakers to scale these innovations, ensuring their implementation not only in Indonesia but also in other regions facing similar challenges, thereby promoting food security and environmental sustainability in the face of climate change.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Irrigation and Water Management of Tomatoes–A Review","authors":"Olabisi Tolulope Somefun, Blessing Masasi, Anuoluwapo Omolola Adelabu","doi":"10.1002/sae2.70020","DOIUrl":"https://doi.org/10.1002/sae2.70020","url":null,"abstract":"<p>Effective water management practices are essential for maximising tomato yield while mitigating the risks associated with climate change. The need for climate-smart irrigation management techniques in agriculture has increased to optimise water use efficiency and enhance crop productivity. Irrigation scheduling using precision agriculture technologies like soil moisture sensors is an effective and efficient water management strategy in crop production. This strategy helps growers apply the right amount of water at the right time to meet crop needs, thus reducing water wastage and increasing environmental sustainability. Combining soil moisture sensors and crop simulation models for real-time irrigation scheduling can enhance water use efficiency while reducing operations, energy costs, and labour in crop production. Therefore, this study provides a comprehensive review of the current efforts to improve irrigation management by integrating precision agriculture technologies such as soil moisture sensors, plant sensors, and crop models for irrigation scheduling in tomato production.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Campos-Cáliz, Enrique Valencia, César Plaza, Gina Garland, Anna Edlinger, Chantal Herzog, Marcel G. A. van der Heijden, Samiran Banerjee, Matthias C. Rillig, Sara Hallin, Aurélien Saghaï, Fernando T. Maestre, David S. Pescador, Laurent Philippot, Ayme Spor, Sana Romdhane, Pablo García-Palacios
{"title":"The Positive Effects of Soil Organic Carbon on European Cereal Yields Level Off at 1.4%","authors":"Ana Campos-Cáliz, Enrique Valencia, César Plaza, Gina Garland, Anna Edlinger, Chantal Herzog, Marcel G. A. van der Heijden, Samiran Banerjee, Matthias C. Rillig, Sara Hallin, Aurélien Saghaï, Fernando T. Maestre, David S. Pescador, Laurent Philippot, Ayme Spor, Sana Romdhane, Pablo García-Palacios","doi":"10.1002/sae2.70017","DOIUrl":"https://doi.org/10.1002/sae2.70017","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Increasing soil organic carbon (SOC) in croplands is a natural climate mitigation effort that can also enhance crop yields. However, there is a lack of comprehensive field studies examining the impact of SOC on crop yields across wide climatic, soil, and farming gradients. Furthermore, it is largely unknown how water retention, soil microbial diversity, and nutrient availability modulate the SOC-crop yield relationship.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>We conducted an observational study across 127 cereal fields along a 3000 km north-south gradient in Europe, measured topsoil (0–20 cm) organic C content, and collected data on climate, soil properties, crop yield and farming practices. Additionally, we explored the relationship between crop yield, particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) contents at three soil depths (0–20, 20–40 and 40–60 cm) in a subset of sites.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Relative yield increases levelled off at 1.4% SOC, indicating an optimal SOC content for cereals along a European gradient. The quadratic relationship between SOC and cereal yield was conspicuous even after controlling for large differences in climate, soil and farming practices across countries. The relationship varied significantly across soil depths and C fractions. MAOC dominated the SOC pool, and was significantly related to relative yield up to an optimal level that varied with soil depth. Soil microbial diversity and nutrient availability emerged as main drivers of the SOC-yield relationship, while water retention did not exhibit a notable influence.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Our study demonstrates that SOC is as a key determinant of cereal yield along a European gradient, and identifying this threshold can inform soil management strategies for improved carbon capture based on initial SOC levels. Nevertheless, the complex SOC-yield relationship highlights the necessity for tailored soil management strategies that consider specific site conditions to optimize C storage and crop yield.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fifame Panine Yassegoungbe, Gaius Segbegnon Vihowanou, Tawakalitu Onanyemi, Mohamed Habibou Assouma, Eva Schlecht, Luc Hippolyte Dossa
{"title":"Enteric Methane Production, Yield, and Intensity in Smallholder Dairy Farming Systems in Peri-Urban Areas of Coastal West African Countries: Case Study of Benin","authors":"Fifame Panine Yassegoungbe, Gaius Segbegnon Vihowanou, Tawakalitu Onanyemi, Mohamed Habibou Assouma, Eva Schlecht, Luc Hippolyte Dossa","doi":"10.1002/sae2.70019","DOIUrl":"https://doi.org/10.1002/sae2.70019","url":null,"abstract":"<p>Enteric methane (eCH4) is a major environmental pollutant emitted by ruminants. To target mitigation measures, it is necessary to accurately estimate GHG emissions from livestock farming. Until now, milk-producing farms in the peri-urban areas of South Benin are pasture-based systems, and have been largely neglected by international research. Therefore, this study estimates eCH4 emissions from pasture-based peri-urban dairy farms across four different animal categories during dry and wet seasons. Six herds were selected for field measurements; one representative animal was selected per category from each herd and its body weight estimated. Subsequently, the selected animals were closely monitored on pasture for three consecutive days. Direct observation of their behavior and the hand-plucking method were used to mimic the animals' selective foraging and to sample parts of the different plant species consumed in proportion to their, to determine the quality of their daily diet. The nutrient content and digestibility of the collected feed samples were assessed using near-infrared spectroscopy. Additionally, 30 herds were monitored bi-monthly during a 12-month period to collect all input and output data, including milk yields. Annual enteric methane (eCH4) emissions per animal category were estimated using the IPCC Tier 2 method. Subsequently, the eCH4 intensities of lactating cows were calculated per kg of fat-protein corrected milk (FPCM). All statistical analyses were performed using R software. Overall, the average annual eCH4 production was 40.6 kg/head/year and the eCH4 yield was 20.3 g/kg of dry matter intake, with significant differences between seasons and no differences between animal categories. Regardless of season, older animals yielded higher eCH4 outputs. The average eCH4 production per kg of live weight was 0.48 g for both seasons. The overall eCH4 intensity (g CH4/kg FPCM) recorded during the wet season (74.3) was higher than that recorded during the dry season (70.5).</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anita Nagarajan, Bernard Goyette, Vijaya Raghavan, Dominic Poulin-Laprade, Rajinikanth Rajagopal
{"title":"Integrating Anaerobic Digestion With Struvite Production for Enhanced Nutrient Recovery, Pathogen Reduction, and Circularity in Manure Management","authors":"Anita Nagarajan, Bernard Goyette, Vijaya Raghavan, Dominic Poulin-Laprade, Rajinikanth Rajagopal","doi":"10.1002/sae2.70018","DOIUrl":"https://doi.org/10.1002/sae2.70018","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Anaerobic digestion (AD) is essential for manure management, generating biogas and nutrient-rich digestate for organic fertilizer. However, improper digestate use can pose environmental risks. Recovering struvite, a magnesium ammonium phosphate (MAP) compound, from digestate provides a sustainable, controlled-release fertilizer, supporting a circular economy in agriculture.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>The study employed a two-stage (liquid–solid) AD process using poultry, dairy, and swine manures, along with wasted corn silage. Digestates were sampled for physicochemical and biogas quality analyses, with feedstocks categorized into D1 and D2, and a composite (D3) formed for struvite characterization. Microbial populations were enumerated on selective media, and struvite mineral content was analysed via argon plasma emission spectrometry.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The digesters processing feedstock mixtures D1 and D2 achieved specific methane yields of 1.26 L/g CODs fed and 1.49 L/g CODs fed, with cumulative biogas production of 374 and 369 L, respectively, over four 77-day cycles. The two-stage AD process significantly reduced antibiotic-resistant, <i>Enterobacteriaceae</i> and <i>Enterococcus</i> spp. Total ammoniacal nitrogen (TAN) recovery rates were high at 98%–99%, with a consistent struvite crystal mass of 0.67 g/10 mL, indicating the efficiency of this integrated process. The agronomic value of struvite was determined, indicating its potential utility as a fertilizer, and scanning electron microscopy analysis revealed diverse crystal structures, warranting further investigation into their implications for usage and storage.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>The results suggests that the two-stage AD process efficiently transforms organic waste into high-quality biogas, reduces antibiotic-resistant bacteria, and facilitates nutrient recovery through struvite precipitation. This approach supports co-digestion of multi-substrates and promotes circular economy principles, with potassium or sodium phosphate enhancing struvite recovery for sustainable agriculture.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samreen Nazeer, Anna Agosti, Lorenzo Del Vecchio, Leandra Leto, Andrea Di Fazio, Jasmine H. Saadoun, Alessia Levante, Camilla Lazzi, Martina Cirlini, Benedetta Chiancone
{"title":"Assessment of Fermented Kiwifruit on Morpho-Physiological and Productive Performances of Fragaria spp Plants, Grown Under Hydroponic Conditions","authors":"Samreen Nazeer, Anna Agosti, Lorenzo Del Vecchio, Leandra Leto, Andrea Di Fazio, Jasmine H. Saadoun, Alessia Levante, Camilla Lazzi, Martina Cirlini, Benedetta Chiancone","doi":"10.1002/sae2.70024","DOIUrl":"https://doi.org/10.1002/sae2.70024","url":null,"abstract":"<p>Climate change poses a significant threat to global agriculture by altering weather patterns, increasing the frequency of extreme events, and reducing the availability of arable land. Hydroponic systems offer a sustainable solution allowing efficient resource use, including water and nutrients, and enabling cultivation in areas with poor soil quality or limited space. The incorporation of biostimulants derived from plant byproducts further enhances sustainability by improving plant growth and resilience, reducing the use of synthetic fertilizers and the environmental footprint of agriculture, promoting, at the same time, healtier crop production. This study investigates the effect of biostimulants, derived from fermented kiwifruit byproducts, on the morpho-physiological and productive performances of <i>Fragaria vesca</i> (L.), cv. Malga, and of <i>Fragaria x ananassa</i> (Duch.), cv. Annabelle, grown in a column hydroponic system. Plants of both species, when treated with the biostimulant, demonstrated significant improvements for all the parameters evaluated, with healthier plants and improved quality features in fruits. These findings suggest that fermented kiwi byproduct could be an effective, sustainable integration to synthetic fertilizers, promoting better growth and fruit quality in strawberry cultivation under hydroponic systems.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Issouf Zerbo, Kounbo Dabiré, Sibiry Albert Kaboré, Constant Martin Sawadogo, Adjima Thiombiano
{"title":"Plant Agrobiodiversity, Agricultural and Phytosanitary Practices of Market Garden Crops in the Centre-East Region of Burkina Faso","authors":"Issouf Zerbo, Kounbo Dabiré, Sibiry Albert Kaboré, Constant Martin Sawadogo, Adjima Thiombiano","doi":"10.1002/sae2.70016","DOIUrl":"https://doi.org/10.1002/sae2.70016","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>In West Africa, market gardeners use various agricultural practices to increase yields. However, many of these practices do not comply with agroecological standards and cause intoxication, pollution, soil degradation and biodiversity loss. This study characterizes the plant agrobiodiversity of market garden crops grown during the rainy season and the agricultural and phytosanitary practices used for their management.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>The study was carried out in Burkina Faso. Plant agrobiodiversity was assessed in 100 market gardens. Agricultural and phytosanitary practices were characterized using semi-structured interviews. A Sankey diagram was used to highlight the relationships among market garden crops, bioaggressors and diseases. Principal component analyses were applied to highlight the agricultural and phytosanitary practices used.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The results revealed rich agrobiodiversity, including 16 market garden crops, 15 local agroforestry species, 17 planted species and 37 weed species. The main market garden crops grown in the rainy season were cabbage (20.30%), lettuce (16.62%), tomato (11.69%), and amaranth (10.15%). The most frequent agroforestry species were <i>Azadirachta indica</i> (18.20%) and <i>Mangifera indica</i> (15.03%). The most common weeds were <i>Eleusine indica</i> (11.02%) and <i>Cyperus reduncus</i> (9.70%). Eleven pests were identified, and the most frequently recorded were caterpillars (39.06%). Sixteen diseases were reported, the most common being leaf yellowing (15.67%) and leaf wilt (11.67%). Numerous market gardeners use mineral fertilizers such as Yaramila (NPK 23-10-5), NPK (14-23-14), urea (46.00% nitrogen), and liquid fertilizer as well as compost and organic manure. The most common agricultural practice was crop rotation (79.00%). To protect crops, 89.00% of producers used synthetic chemical pesticides in an uncontrolled manner, most of which are purchased on the local market. Only 11.00% of the market gardeners practiced the natural phytosanitary treatments.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>This study provides important information that can be used for the sustainable management of market gardens. Agroecological standards should be popularized to ensure food security for market garden crops.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Threat of Human Pathogens in Farmlands: A One Health Perspective","authors":"Gaofei Jiang, Xinrun Yang, Thomas Pommier, Yangchun Xu, Qirong Shen, Zhong Wei","doi":"10.1002/sae2.70023","DOIUrl":"https://doi.org/10.1002/sae2.70023","url":null,"abstract":"<p>A key aspect of “One Health” is to recognize that environmental health and human health are inseparable. In this interconnected network, farmland plays a crucial role, as it serves as a link connecting various ecosystems. However, the threat of human pathogens in farmlands is often overlooked despite growing evidence highlighting its importance as a pressing public health concern via direct and indirect pathways. To address this issue, we advocate the adoption of a “One Health” approach, which relies on strengthening the development of detection tools and emphasizing the importance of sustainable agricultural practices aimed at enhancing soil biodiversity. By doing so, we can effectively disrupt the transmission source and mitigate the risks posed by human pathogens in agricultural ecosystems, ultimately safeguarding both human health and agricultural sustainability.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Long-term application of mineral fertilizer weakens the stability of microbial N-transforming functions via the decrease of soil microbial diversity","authors":"Zhou Zhang, Ruirui Chen, Evgenia Blagodatskaya, Sergey Blagodatsky, Deyan Liu, Yongjie Yu, Xiaolin Zhu, Youzhi Feng","doi":"10.1002/sae2.70014","DOIUrl":"https://doi.org/10.1002/sae2.70014","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Ensuring functional stability is crucial for the sustainable development and soil health of agroecosystems amidst escalating climate changes. Although mineral fertilization is known to enhance the strength of soil N-transforming functions, its effects on functional stability remain unclear.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials & Methods</h3>\u0000 \u0000 <p>This study evaluated three stability components (resistance, resilience, and recovery), along with the dimensionality of soil microbial N-transforming functions during drought-rewetting process. We investigated enzymatic activity and functional gene abundances after 10 years of fertilization under three strategies, mineral fertilization (NPK), mineral fertilization plus organic amendments (OMN), and no fertilization (CK).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The resistance was 0.60, 0.66 and 0.56; the resilience was 0.46, 0.28 and 0.46; and the recovery was 0.83, 0.73 and 0.82, respectively in the CK, NPK and OMN treatments. Soils with long-term mineral fertilization exhibited the highest resistance but the lowest resilience and recovery during drought-rewetting. Furthermore, mineral fertilization demonstrated the lowest dimensionality of stability, with smallest ellipsoid volume and most negative correlations. Soil microbial alpha diversity was identified as a key predictor of functional stability, positively correlating with stability across fertilization strategies.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Mineral fertilization, which decreased alpha diversity, posed challenges for sustainable development of agroecosystems under drought conditions. Mineral fertilization plus organic amendments provided strong N-transforming functions and moderate stability, making it as an optimal fertilization strategy. These results offer valuable insights for optimizing agroecosystem management and advancing soil sustainability.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Girish Kumar Jha, Praveen Koovalamkadu Velayudhan, Toritseju Begho, Vera Eory, Arti Bhatia
{"title":"Intensity of synthetic and organic fertilizers use among Indian paddy growers: Determinants and implications for productivity and sustainability","authors":"Girish Kumar Jha, Praveen Koovalamkadu Velayudhan, Toritseju Begho, Vera Eory, Arti Bhatia","doi":"10.1002/sae2.70013","DOIUrl":"https://doi.org/10.1002/sae2.70013","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>Nitrogen use efficiency (NUE) is lower for South Asia than for most other regions of the world, and average crop NUE is on the decline in India. This inefficient use of nitrogen fertilizers has implications for agricultural productivity and environmental sustainability.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>Using data from 14,669 farmers in India, this paper examined the determinants of synthetic fertilizer and manure adoption and intensity of use for rice (<i>Oryza sativa</i> L.) production. The latter was assessed through fertilizer expenditure rather than the traditional weight-based method. A double hurdle model was estimated.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The study showed that farmers' decisions to adopt fertilizer or manure and the decision on use intensity were independent. Both synthetic fertilizers and manure adoption were influenced by common drivers such as access to financial resources through instruments like the Kisan Credit Card and loans, expenditure on irrigation and labour, and geographical location. In terms of barriers, the likelihood of adoption of both synthetic fertilizer and manure was lower among landowners and paddy area cultivated. The intensity of fertilizer and manure use was higher for older farmers and was positively influenced by expenditure on labour but negatively influenced by ownership of livestock. Also, synthetic fertilizers and manure use intensity were determined by regional temperature and geographical zones.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>The results of this study are useful for targeted interventions to promote sustainable fertilizer use with a focus on following recommendations in zones or among demographic groups that are currently more likely to have a high intensity of use. Similarly, the findings inform support towards increased adoption and sustainable use where fertilizer is underutilised.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}