IET Quantum Communication最新文献

筛选
英文 中文
Quantum machine learning with Qiskit: Evaluating regression accuracy and noise impact 利用 Qiskit 进行量子机器学习:评估回归精度和噪声影响
IF 2.5
IET Quantum Communication Pub Date : 2024-07-01 DOI: 10.1049/qtc2.12100
Amit Kumar, Neha Sharma, Nikhil Kumar Marriwala, Sunita Panda, M. Aruna, Jeetendra Kumar
{"title":"Quantum machine learning with Qiskit: Evaluating regression accuracy and noise impact","authors":"Amit Kumar,&nbsp;Neha Sharma,&nbsp;Nikhil Kumar Marriwala,&nbsp;Sunita Panda,&nbsp;M. Aruna,&nbsp;Jeetendra Kumar","doi":"10.1049/qtc2.12100","DOIUrl":"10.1049/qtc2.12100","url":null,"abstract":"<p>Quantum machine learning (QML) can be employed in solving complicated machine learning tasks although the performance in examining the regression processes is only barely understood. Knowledge gaps are intended to be closed by studying modelling performance of QML in regression tasks, with emphasis being dedicated to scaling up and ability to resist noise. The regression part offers the following functions that include straight line and complex operations. Furthermore, the authors employ quantum neural networks generated using Qiskit to perform experiments. The results demonstrate that QML has a remarkable level of accuracy in basic regressions, reaching a maximum of 97%. Nevertheless, there are difficulties in representing intricate functions, such as 5 × cos(<i>x</i>), which results in a noticeable decline in performance. The work deals with the influence of noise and IERs from imperfect hardware on the efficiency of QML algorithms providing insight into the core obstacles. The result of a detailed examination of the results that have tested the powers and limits of QML in the development of regression applications is represented. The future direction of research and development will be defined by the results obtained in it.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 4","pages":"310-321"},"PeriodicalIF":2.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141702389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum algorithm for bioinformatics to compute the similarity between proteins
IF 2.5
IET Quantum Communication Pub Date : 2024-06-24 DOI: 10.1049/qtc2.12098
Anthony Chagneau, Yousra Massaoudi, Imene Derbali, Linda Yahiaoui
{"title":"Quantum algorithm for bioinformatics to compute the similarity between proteins","authors":"Anthony Chagneau,&nbsp;Yousra Massaoudi,&nbsp;Imene Derbali,&nbsp;Linda Yahiaoui","doi":"10.1049/qtc2.12098","DOIUrl":"https://doi.org/10.1049/qtc2.12098","url":null,"abstract":"<p>Drug discovery has become a main challenge in the society, following the COVID-19 pandemic. However, pharmaceutical companies are already using computing to accelerate drug discovery and are increasingly interested in quantum computing (QC), with a view to improving the speed of development process for new drugs. The authors propose a quantum method for generating random sequences based on occurrence in a protein database and quantum algorithms for calculating a similarity rate between proteins. Both concepts can be used for structure prediction in drug design. The aim is to find the proteins closest to the generated protein and obtain an ordering of these proteins. First, the authors will present the construction of a quantum protein generator that defines a protein, called a test protein. The authors will then describe different methods to compute the similarity's rate between each protein in the database and the test protein or, for a case study, the elafin. The algorithms have been extended or adapted to a quantum formalism for use cases, that is, amino acid sequences, and tested to see the added value of quantum versions. The interest is to observe whether QC can be used in the drug discovery process.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 4","pages":"417-442"},"PeriodicalIF":2.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12098","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143253187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum-inspired Arecanut X-ray image classification using transfer learning 利用迁移学习进行量子启发的阿雷卡努X射线图像分类
IF 2.5
IET Quantum Communication Pub Date : 2024-06-06 DOI: 10.1049/qtc2.12099
Praveen M. Naik, Bhawana Rudra
{"title":"Quantum-inspired Arecanut X-ray image classification using transfer learning","authors":"Praveen M. Naik,&nbsp;Bhawana Rudra","doi":"10.1049/qtc2.12099","DOIUrl":"10.1049/qtc2.12099","url":null,"abstract":"<p>Arecanut X-ray images accurately represent their internal structure. A comparative analysis of transfer learning-based classification, employing both a traditional convolutional neural network (CNN) and an advanced quantum convolutional neural network (QCNN) approach is conducted. The investigation explores various transfer learning models with different sizes to identify the most suitable one for achieving enhanced accuracy. The Shufflenet model with a scale factor of 2.0 attains the highest classification accuracy of 97.72% using the QCNN approach, with a model size of 28.40 MB. Out of the 12 transfer learning models tested, 9 exhibit improved classification accuracy when using QCNN models compared to the traditional CNN-based transfer learning approach. Consequently, the exploration of CNN and QCNN-based classification reveals that QCNN outperforms traditional CNN models in accuracy within the transfer learning framework. Further experiments with qubits suggest that utilising 4 qubits is optimal for classification operations in this context.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 4","pages":"303-309"},"PeriodicalIF":2.5,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12099","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141378778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum computing challenges and solutions in software industry—A multivocal literature review 软件行业的量子计算挑战与解决方案--多声部文献综述
IF 2.5
IET Quantum Communication Pub Date : 2024-06-02 DOI: 10.1049/qtc2.12096
Masaud Salam, Muhammad Ilyas
{"title":"Quantum computing challenges and solutions in software industry—A multivocal literature review","authors":"Masaud Salam,&nbsp;Muhammad Ilyas","doi":"10.1049/qtc2.12096","DOIUrl":"10.1049/qtc2.12096","url":null,"abstract":"<p>Quantum computing (QC) hinged upon the bedrock principles of quantum theory and holds promise for reforming a large number of industries. The researcher in this area aims to deliver a comprehensive understanding of the current state of the art and future trajectories of QC. The authors have discovered that most academic studies have concentrated upon dissecting specific aspects of QC. This discernment underscores the exigency of identifying challenges that might impede the seamless integration of QC within the software industry. Moreover, it becomes crucial to ascertain the panoply of solutions/practices required to overcome these barriers. A comprehensive multi-vocal literature review was performed and culled a total of 49 academic papers for data extraction. A total of 13 challenges encountered by organisations were identified during the adoption of QC. Subsequently, these challenges were examined deeply and determined that five of them are the most critical, these are ‘Lack of quantum specific algorithms, dev and testing methodologies’, ‘Difficult compilation and debugging’, ‘Lack of development tools and technology’, ‘Lack of development guidelines &amp; Quality Assurance Standards’ and ‘Lack of professional expert’, together founding over 30% of occurrences. These challenges from various perspectives were evaluated, including time frame, methodology, geographical region and publication platform. To address these barriers and implement the QC in software industry effectively, a total of 53 practices/solutions. This research aims to share valuable knowledge to simplify and amplify quantum application development.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 4","pages":"462-485"},"PeriodicalIF":2.5,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12096","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141273725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental feasibility analysis of quantum/classical coexistence over fibre and free space links
IF 2.5
IET Quantum Communication Pub Date : 2024-05-27 DOI: 10.1049/qtc2.12097
Aristeidis Stathis, Argiris Ntanos, Panagiotis Toumasis, Nikolaos K. Lyras, Giannis Giannoulis, Hercules Avramopoulos
{"title":"Experimental feasibility analysis of quantum/classical coexistence over fibre and free space links","authors":"Aristeidis Stathis,&nbsp;Argiris Ntanos,&nbsp;Panagiotis Toumasis,&nbsp;Nikolaos K. Lyras,&nbsp;Giannis Giannoulis,&nbsp;Hercules Avramopoulos","doi":"10.1049/qtc2.12097","DOIUrl":"https://doi.org/10.1049/qtc2.12097","url":null,"abstract":"<p>The authors present a novel approach to Quantum Key Distribution (QKD) research, emphasising cost-effectiveness and practicality using a single photon polarisation-encoded system employing mainly commercial off-the-shelf components. This study diverges from previous high-cost, high-end setups by exploring the viability of QKD in more accessible and realistic settings. Our approach focuses on practical measurements of the signal-to-noise ratio by analysing polarisation-encoded photonic qubits over various transmission scenarios. The authors introduce a simplified evaluation method that incorporates experimental measurements, such as noise sources and losses, into a semi-empirical theoretical framework. This framework simulates the standard DS-BB84 protocol to estimate Secure Key Rates (SKRs), offering an alternative approach on the evaluation of the practical implementation of QKD. Specifically, the authors examine the feasibility of QKD over a 2.2 km intra-campus fibre link in coexistence scenarios, identifying optimal Wavelength-Division Multiplexing allocations to minimise Raman noise, achieving an expected SKR of up to 300 bps. Additionally, the authors’ study extends to 40 m indoor and 100 m outdoor Free-Space Optical (FSO) links using low-cost components, where the authors recorded Quantum Bit Error Rate (QBER) values below 3.2%, allowing for possible SKRs up to 600 bps even in daylight operation. The converged fibre/FSO scenario demonstrated robust performance, with QBER values below 3.7% and an expected SKR of over 200 bps. Our research bridges the gap between high-end and economical QKD solutions, providing valuable insights into the feasibility of QKD in everyday scenarios, especially within metropolitan fibre based and FSO links. By leveraging cost-effective components and a simplified single photon exchange setup, the authors work paves the way for the effortless characterisation of deployed infrastructure, highlighting its potential in diverse settings and its accessibility for widespread implementation.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 4","pages":"575-585"},"PeriodicalIF":2.5,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12097","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143253486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-field comparison between G.652 and G.655 optical fibres for polarisation-based quantum key distribution
IF 2.5
IET Quantum Communication Pub Date : 2024-05-03 DOI: 10.1049/qtc2.12095
Costantino Agnesi, Massimo Giacomin, Daniele Sartorato, Silvia Artuso, Giuseppe Vallone, Paolo Villoresi
{"title":"In-field comparison between G.652 and G.655 optical fibres for polarisation-based quantum key distribution","authors":"Costantino Agnesi,&nbsp;Massimo Giacomin,&nbsp;Daniele Sartorato,&nbsp;Silvia Artuso,&nbsp;Giuseppe Vallone,&nbsp;Paolo Villoresi","doi":"10.1049/qtc2.12095","DOIUrl":"https://doi.org/10.1049/qtc2.12095","url":null,"abstract":"<p>Integration of Quantum Key Distribution (QKD) in existing telecommunication infrastructure is crucial for the widespread adoption of this quantum technology that offers the distillation of unconditionally secure keys between users. The authors report a field trial between the <i>Points of Presence</i> placed in Treviso and in Venezia—Mestre, Italy, exploiting the QuKy commercial polarisation-based QKD platforms developed by ThinkQuantum S.r.l. and two different standards of single-mode optical fibres, that is, <i>G</i>.<i>652</i> and <i>G</i>.<i>655</i> as a quantum channel. In this field trial, several configurations were tested, including the co-existence of classical and quantum signals over the same fibre, providing a direct comparison between the performances of the G.652 and G.655 fibre standards for QKD applications.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 4","pages":"567-574"},"PeriodicalIF":2.5,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12095","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in artificial intelligence and machine learning for quantum communication applications 人工智能和机器学习在量子通信应用方面的进展
IF 2.5
IET Quantum Communication Pub Date : 2024-04-16 DOI: 10.1049/qtc2.12094
Mhlambululi Mafu
{"title":"Advances in artificial intelligence and machine learning for quantum communication applications","authors":"Mhlambululi Mafu","doi":"10.1049/qtc2.12094","DOIUrl":"10.1049/qtc2.12094","url":null,"abstract":"<p>Artificial intelligence (AI) and classical machine learning (ML) techniques have revolutionised numerous fields, including quantum communication. Quantum communication technologies rely heavily on quantum resources, which can be challenging to produce, control, and maintain effectively to ensure optimum performance. ML has recently been applied to quantum communication and networks to mitigate noise-induced errors and analyse quantum protocols. The authors systematically review state-of-the-art ML applications to advance theoretical and experimental central quantum communication protocols, specifically quantum key distribution, quantum teleportation, quantum secret sharing, and quantum networks. Specifically, the authors survey the progress on how ML and, more broadly, AI techniques have been applied to optimise various components of a quantum communication system. This has resulted in ultra-secure quantum communication protocols with optimised key generation rates as well as efficient and robust quantum networks. Integrating AI and ML techniques opens intriguing prospects for securing and facilitating efficient and reliable large-scale communication between multiple parties. Most significantly, large-scale communication networks have the potential to gradually develop the maturity of a future quantum internet.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 3","pages":"202-231"},"PeriodicalIF":2.5,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140698389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
End-to-end demonstration for CubeSatellite quantum key distribution 立方体卫星量子密钥分发的端到端演示
IF 2.5
IET Quantum Communication Pub Date : 2024-04-14 DOI: 10.1049/qtc2.12093
Peide Zhang, Jaya Sagar, Elliott Hastings, Milan Stefko, Siddarth Joshi, John Rarity
{"title":"End-to-end demonstration for CubeSatellite quantum key distribution","authors":"Peide Zhang,&nbsp;Jaya Sagar,&nbsp;Elliott Hastings,&nbsp;Milan Stefko,&nbsp;Siddarth Joshi,&nbsp;John Rarity","doi":"10.1049/qtc2.12093","DOIUrl":"https://doi.org/10.1049/qtc2.12093","url":null,"abstract":"<p>Quantum key distribution (QKD) provides a method of ensuring security using the laws of physics, avoiding the risks inherent in cryptosystems protected by computational complexity. Here, the authors investigate the feasibility of satellite-based quantum key exchange using low-cost compact nano-satellites. The first prototype of system level quantum key distribution aimed at the Cube satellite scenario is demonstrated. It consists of a transmitter payload, a ground receiver and simulated free space channel to verify the timing and synchronisation (T&amp;S) scheme designed for QKD and the required high loss tolerance of both QKD and T&amp;S channels. The transmitter is designed to be deployed on various up-coming nano-satellite missions in the UK and internationally. The effects of channel loss, background noise, gate width and mean photon number on the secure key rate (SKR) and quantum bit error rate (QBER) are discussed. The authors also analyse the source of QBER and establish the relationship between effective signal noise ratio (ESNR) and noise level, signal strength, gating window and other parameters as a reference for SKR optimisation. The experiment shows that it can tolerate the 40 dB loss expected in space to ground QKD and with small adjustment decoy states can be achieved. The discussion offers valuable insight not only for the design and optimisation of miniature low-cost satellite-based QKD systems but also any other short or long range free space QKD on the ground or in the air.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 3","pages":"291-302"},"PeriodicalIF":2.5,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12093","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entanglement and teleportation in quantum key distribution for secure wireless systems 安全无线系统量子密钥分发中的纠缠和远距传输
IF 2.5
IET Quantum Communication Pub Date : 2024-03-19 DOI: 10.1049/qtc2.12092
Md. Ferdous Ahammed, Mohammad Ismat Kadir
{"title":"Entanglement and teleportation in quantum key distribution for secure wireless systems","authors":"Md. Ferdous Ahammed,&nbsp;Mohammad Ismat Kadir","doi":"10.1049/qtc2.12092","DOIUrl":"10.1049/qtc2.12092","url":null,"abstract":"<p>Entanglement-assisted quantum key distribution (QKD) has attracted significant attention for its ability to provide highly secure wireless systems. This work explores the employment of quantum teleportation and the quantum Fourier transform (QFT) in entanglement-assisted QKD to enhance security. By integrating the concepts of entanglement, teleportation, and QFT, the key distribution strategy is significantly improved, leading to more secure communication. The system has been thoroughly tested for quantum bit error rate, secure key rate, and reconciliation efficiency. The results show that this technique outperforms the standard BB84 protocol. Based on their simulations, this protocol appears to be a promising technique for providing quantum-level security to next-generation wireless communication systems.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 4","pages":"551-566"},"PeriodicalIF":2.5,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12092","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140230263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Successive data injection in conditional quantum GAN applied to time series anomaly detection 条件量子 GAN 中的连续数据注入应用于时间序列异常检测
IF 2.5
IET Quantum Communication Pub Date : 2024-02-27 DOI: 10.1049/qtc2.12088
Benjamin Kalfon, Soumaya Cherkaoui, Jean-Frédéric Laprade, Ola Ahmad, Shengrui Wang
{"title":"Successive data injection in conditional quantum GAN applied to time series anomaly detection","authors":"Benjamin Kalfon,&nbsp;Soumaya Cherkaoui,&nbsp;Jean-Frédéric Laprade,&nbsp;Ola Ahmad,&nbsp;Shengrui Wang","doi":"10.1049/qtc2.12088","DOIUrl":"https://doi.org/10.1049/qtc2.12088","url":null,"abstract":"<p>Classical GAN architectures have shown interesting results for solving anomaly detection problems in general and for time series anomalies in particular, such as those arising in communication networks. In recent years, several quantum GAN (QGAN) architectures have been proposed in the literature. When detecting anomalies in time series using QGANs, huge challenges arise due to the limited number of qubits compared to the size of the data. To address these challenges, a new high-dimensional encoding approach, named Successive Data Injection (SuDaI) is proposed. In this approach, SuDaI explores a larger portion of the quantum state, compared to the conventional angle encoding method used predominantly in the literature. This is achieved through repeated data injections into the quantum state. SuDaI encoding allows the authors to adapt the QGAN for anomaly detection with network data of a much higher dimensionality than with the existing known QGANs implementations. In addition, SuDaI encoding applies to other types of high-dimensional time series and can be used in contexts beyond anomaly detection and QGANs, opening up therefore multiple fields of application.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 3","pages":"269-281"},"PeriodicalIF":2.5,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12088","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信