{"title":"Network Anomaly Detection Using Quantum Neural Networks on Noisy Quantum Computers","authors":"Alon Kukliansky;Marko Orescanin;Chad Bollmann;Theodore Huffmire","doi":"10.1109/TQE.2024.3359574","DOIUrl":"https://doi.org/10.1109/TQE.2024.3359574","url":null,"abstract":"The escalating threat and impact of network-based attacks necessitate innovative intrusion detection systems. Machine learning has shown promise, with recent strides in quantum machine learning offering new avenues. However, the potential of quantum computing is tempered by challenges in current noisy intermediate-scale quantum era machines. In this article, we explore quantum neural networks (QNNs) for intrusion detection, optimizing their performance within current quantum computing limitations. Our approach includes efficient classical feature encoding, QNN classifier selection, and performance tuning leveraging current quantum computational power. This study culminates in an optimized multilayered QNN architecture for network intrusion detection. A small version of the proposed architecture was implemented on IonQ's Aria-1 quantum computer, achieving a notable 0.86 F1 score using the NF-UNSW-NB15 dataset. In addition, we introduce a novel metric, certainty factor, laying the foundation for future integration of uncertainty measures in quantum classification outputs. Moreover, this factor is used to predict the noise susceptibility of our quantum binary classification system.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10415536","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140014864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"State Preparation on Quantum Computers via Quantum Steering","authors":"Daniel Volya;Prabhat Mishra","doi":"10.1109/TQE.2024.3358193","DOIUrl":"https://doi.org/10.1109/TQE.2024.3358193","url":null,"abstract":"Quantum computers present a compelling platform for the study of open quantum systems, namely, the nonunitary dynamics of a system. Here, we investigate and report digital simulations of Markovian nonunitary dynamics that converge to a unique steady state. The steady state is programmed as a desired target state, yielding semblance to a quantum state preparation protocol. By delegating ancilla qubits and system qubits, the system state is driven to the target state by repeatedly performing the following steps: 1) executing a designated system–ancilla entangling circuit; 2) measuring the ancilla qubits; and 3) reinitializing ancilla qubits to known states through active reset. While the ancilla qubits are measured and reinitialized to known states, the system qubits undergo a nonunitary evolution and are steered from arbitrary initial states to desired target states. We show results of the method by preparing arbitrary qubit states and qutrit (three-level) states on contemporary quantum computers. We also demonstrate that the state convergence can be accelerated by utilizing the readouts of the ancilla qubits to guide the protocol in a nonblind manner. Our work serves as a nontrivial example that incorporates and characterizes essential operations, such as qubit reuse (qubit reset), entangling circuits, and measurement. These operations are not only vital for near-term noisy intermediate-scale quantum applications but are also crucial for realizing future error-correcting codes.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10413647","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140063485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal Partitioning of Quantum Circuits Using Gate Cuts and Wire Cuts","authors":"Sebastian Brandhofer;Ilia Polian;Kevin Krsulich","doi":"10.1109/TQE.2023.3347106","DOIUrl":"https://doi.org/10.1109/TQE.2023.3347106","url":null,"abstract":"A limited number of qubits, high error rates, and limited qubit connectivity are major challenges for effective near-term quantum computations. Quantum circuit partitioning divides a quantum computation into classical postprocessing steps and a set of smaller scale quantum computations that individually require fewer qubits, lower qubit connectivity, and typically incur less error. However, as partitioning generally increases the duration of a quantum computation exponentially in the required partitioning effort, it is crucial to select optimal partitioning points, so-called cuts, and to use optimal cut realizations. In this work, we develop the first optimal partitioning method relying on quantum circuit knitting for optimal cut realizations and an optimal selection of wire cuts and gate cuts that trades off ancilla qubit insertions for a decrease in quantum computing time. Using this combination, the developed method demonstrates a reduction in quantum computing runtime by 41% on average compared to previous quantum circuit partitioning methods. Furthermore, the qubit requirement of the evaluated quantum circuits was reduced by 40% on average for a runtime budget of one hour and a sampling frequency of 1 kHz. These results highlight the optimality gap of previous quantum circuit partitioning methods and the possible extension in the computational reach of near-term quantum computers.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10374226","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139504439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jordi Pérez-Guijarro;Alba Pagés-Zamora;Javier R. Fonollosa
{"title":"Relation Between Quantum Advantage in Supervised Learning and Quantum Computational Advantage","authors":"Jordi Pérez-Guijarro;Alba Pagés-Zamora;Javier R. Fonollosa","doi":"10.1109/TQE.2023.3347476","DOIUrl":"https://doi.org/10.1109/TQE.2023.3347476","url":null,"abstract":"The widespread use of machine learning has raised the question of quantum supremacy for supervised learning as compared to quantum computational advantage. In fact, a recent work shows that computational and learning advantages are, in general, not equivalent, i.e., the additional information provided by a training set can reduce the hardness of some problems. This article investigates under which conditions they are found to be equivalent or, at least, highly related. This relation is analyzed by considering two definitions of learning speed-up: one tied to the distribution and another that is distribution-independent. In both cases, the existence of efficient algorithms to generate training sets emerges as the cornerstone of such conditions, although, for the distribution-independent definition, additional mild conditions must also be met. Finally, these results are applied to prove that there is a quantum speed-up for some learning tasks based on the prime factorization problem, assuming the classical intractability of this problem.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10374234","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139694994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fang Qi;Kaitlin N. Smith;Travis LeCompte;Nian-feng Tzeng;Xu Yuan;Frederic T. Chong;Lu Peng
{"title":"Quantum Vulnerability Analysis to Guide Robust Quantum Computing System Design","authors":"Fang Qi;Kaitlin N. Smith;Travis LeCompte;Nian-feng Tzeng;Xu Yuan;Frederic T. Chong;Lu Peng","doi":"10.1109/TQE.2023.3343625","DOIUrl":"https://doi.org/10.1109/TQE.2023.3343625","url":null,"abstract":"While quantum computers provide exciting opportunities for information processing, they currently suffer from noise during computation that is not fully understood. Incomplete noise models have led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes. For example, the estimated probability of success (ESP) is the state-of-the-art metric used to gauge quantum program performance. The ESP suffers poor prediction since it fails to account for the unique combination of circuit structure, quantum state, and quantum computer properties specific to each program execution. Thus, an urgent need exists for a systematic approach that can elucidate various noise impacts and accurately and robustly predict quantum computer success rates, emphasizing application and device scaling. In this article, we propose quantum vulnerability analysis (QVA) to systematically quantify the error impact on quantum applications and address the gap between current success rate (SR) estimators and real quantum computer results. The QVA determines the cumulative quantum vulnerability (CQV) of the target quantum computation, which quantifies the quantum error impact based on the entire algorithm applied to the target quantum machine. By evaluating the CQV with well-known benchmarks on three 27-qubit quantum computers, the CQV success estimation outperforms the estimated probability of success state-of-the-art prediction technique by achieving on average six times less relative prediction error, with best cases at 30 times, for benchmarks with a real SR rate above 0.1%. Direct application of QVA has been provided that helps researchers choose a promising compiling strategy at compile time.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10361567","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139434858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paolo Fittipaldi;Anastasios Giovanidis;Frédéric Grosshans
{"title":"A Linear Algebraic Framework for Dynamic Scheduling Over Memory-Equipped Quantum Networks","authors":"Paolo Fittipaldi;Anastasios Giovanidis;Frédéric Grosshans","doi":"10.1109/TQE.2023.3341151","DOIUrl":"10.1109/TQE.2023.3341151","url":null,"abstract":"Quantum internetworking is a recent field that promises numerous interesting applications, many of which require the distribution of entanglement between arbitrary pairs of users. This article deals with the problem of scheduling in an arbitrary entanglement swapping quantum network—often called first-generation quantum network—in its general topology, multicommodity, loss-aware formulation. We introduce a linear algebraic framework that exploits quantum memory through the creation of intermediate entangled links. The framework is then employed to apply Lyapunov drift minimization (a standard technique in classical network science) to mathematically derive a natural class of scheduling policies for quantum networks minimizing the square norm of the user demand backlog. Moreover, an additional class of Max-Weight-inspired policies is proposed and benchmarked, reducing significantly the computation cost at the price of a slight performance degradation. The policies are compared in terms of information availability, localization, and overall network performance through an ad hoc simulator that admits user-provided network topologies and scheduling policies in order to showcase the potential application of the provided tools to quantum network design.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-18"},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10352642","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139360177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploiting the Quantum Advantage for Satellite Image Processing: Review and Assessment","authors":"Soronzonbold Otgonbaatar;Dieter Kranzlmüller","doi":"10.1109/TQE.2023.3338970","DOIUrl":"https://doi.org/10.1109/TQE.2023.3338970","url":null,"abstract":"This article examines the current status of quantum computing (QC) in Earth observation and satellite imagery. We analyze the potential limitations and applications of quantum learning models when dealing with satellite data, considering the persistent challenges of profiting from quantum advantage and finding the optimal sharing between high-performance computing (HPC) and QC. We then assess some parameterized quantum circuit models transpiled into a Clifford+T universal gate set. The T-gates shed light on the quantum resources required to deploy quantum models, either on an HPC system or several QC systems. In particular, if the T-gates cannot be simulated efficiently on an HPC system, we can apply a quantum computer and its computational power over conventional techniques. Our quantum resource estimation showed that quantum machine learning (QML) models, with a sufficient number of T-gates, provide the quantum advantage if and only if they generalize on unseen data points better than their classical counterparts deployed on the HPC system and they break the symmetry in their weights at each learning iteration like in conventional deep neural networks. We also estimated the quantum resources required for some QML models as an initial innovation. Lastly, we defined the optimal sharing between an HPC+QC system for executing QML models for hyperspectral satellite images. These are a unique dataset compared with other satellite images since they have a limited number of input quantum bits and a small number of labeled benchmark images, making them less challenging to deploy on quantum computers.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10339907","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139081264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ginés Carrascal;Paula Hernamperez;Guillermo Botella;Alberto del Barrio
{"title":"Backtesting Quantum Computing Algorithms for Portfolio Optimization","authors":"Ginés Carrascal;Paula Hernamperez;Guillermo Botella;Alberto del Barrio","doi":"10.1109/TQE.2023.3337328","DOIUrl":"https://doi.org/10.1109/TQE.2023.3337328","url":null,"abstract":"In portfolio theory, the investment portfolio optimization problem is one of those problems whose complexity grows exponentially with the number of assets. By backtesting classical and quantum computing algorithms, we can get a sense of how these algorithms might perform in the real world. This work establishes a methodology for backtesting classical and quantum algorithms in equivalent conditions, and uses it to explore four quantum and three classical computing algorithms for portfolio optimization and compares the results. Running 10 000 experiments on equivalent conditions we find that quantum can match or slightly outperform classical results, showing a better escalability trend. To the best of our knowledge, this is the first work that performs a systematic backtesting comparison of classical and quantum portfolio optimization algorithms. In this work, we also analyze in more detail the variational quantum eigensolver algorithm, applied to solve the portfolio optimization problem, running on simulators and real quantum computers from IBM. The benefits and drawbacks of backtesting are discussed, as well as some of the challenges involved in using real quantum computers of more than 100 qubits. Results show quantum algorithms can be competitive with classical ones, with the advantage of being able to handle a large number of assets in a reasonable time on a future larger quantum computer.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-20"},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10329473","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139494285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum Computation via Multiport Discretized Quantum Fourier Optical Processors","authors":"Mohammad Rezai;Jawad A. Salehi","doi":"10.1109/TQE.2023.3336514","DOIUrl":"https://doi.org/10.1109/TQE.2023.3336514","url":null,"abstract":"The light's image is the primary source of information carrier in nature. Indeed, a single photon's image possesses a vast information capacity that can be harnessed for quantum information processing. Our scheme for implementing quantum information processing on a discretized photon wavefront via universal multiport processors employs a class of quantum Fourier optical systems composed of spatial phase modulators and 4f-processors with phase-only pupils having a characteristic periodicity that reduces the number of optical resources quadratically as compared to other conventional path-encoding techniques. In particular, this article employs quantum Fourier optics to implement some key quantum logical gates that can be instrumental in optical quantum computations. For instance, we demonstrate the principle by implementing the single-qubit Hadamard and the two-qubit controlled-\u0000<sc>not</small>\u0000 gates via simulation and optimization techniques. Due to various advantages of the proposed scheme, including the large information capacity of the photon wavefront, a quadratically reduced number of optical resources compared with other conventional path-encoding techniques, and dynamic programmability, the proposed scheme has the potential to be an essential contribution to linear optical quantum computing and optical quantum signal processing.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10328681","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139109603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum Conformal Prediction for Reliable Uncertainty Quantification in Quantum Machine Learning","authors":"Sangwoo Park;Osvaldo Simeone","doi":"10.1109/TQE.2023.3333224","DOIUrl":"https://doi.org/10.1109/TQE.2023.3333224","url":null,"abstract":"Quantum machine learning is a promising programming paradigm for the optimization of quantum algorithms in the current era of noisy intermediate-scale quantum computers. A fundamental challenge in quantum machine learning is generalization, as the designer targets performance under testing conditions while having access only to limited training data. Existing generalization analyses, while identifying important general trends and scaling laws, cannot be used to assign reliable and informative “error bars” to the decisions made by quantum models. In this article, we propose a general methodology that can reliably quantify the uncertainty of quantum models, irrespective of the amount of training data, the number of shots, the ansatz, the training algorithm, and the presence of quantum hardware noise. The approach, which builds on probabilistic conformal prediction (CP), turns an arbitrary, possibly small, number of shots from a pretrained quantum model into a set prediction, e.g., an interval, that \u0000<italic>provably</i>\u0000 contains the true target with any desired coverage level. Experimental results confirm the theoretical calibration guarantees of the proposed framework, referred to as quantum CP.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-24"},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10321713","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139908602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}