{"title":"在超导量子处理器上探测量子远程克隆","authors":"Elijah Pelofske;Andreas Bärtschi;Stephan Eidenbenz;Bryan Garcia;Boris Kiefer","doi":"10.1109/TQE.2024.3391654","DOIUrl":null,"url":null,"abstract":"Quantum information cannot be perfectly cloned, but approximate copies of quantum information can be generated. Quantum telecloning combines approximate quantum cloning, more typically referred to as quantum cloning, and quantum teleportation. Quantum telecloning allows approximate copies of quantum information to be constructed by separate parties, using the classical results of a Bell measurement made on a prepared quantum telecloning state. Quantum telecloning can be implemented as a circuit on quantum computers using a classical coprocessor to compute classical feedforward instructions using if statements based on the results of a midcircuit Bell measurement in real time. We present universal symmetric optimal \n<inline-formula><tex-math>$1 \\rightarrow M$</tex-math></inline-formula>\n telecloning circuits and experimentally demonstrate these quantum telecloning circuits for \n<inline-formula><tex-math>$M=2$</tex-math></inline-formula>\n up to \n<inline-formula><tex-math>$M=10$</tex-math></inline-formula>\n, natively executed with real-time classical control systems on IBM Quantum superconducting processors, known as dynamic circuits. We perform the cloning procedure on many different message states across the Bloch sphere, on seven IBM Quantum processors, optionally using the error suppression technique X–X sequence digital dynamical decoupling. Two circuit optimizations are utilized: one that removes ancilla qubits for \n<inline-formula><tex-math>$M=2, 3$</tex-math></inline-formula>\n, and one that reduces the total number of gates in the circuit but still uses ancilla qubits. Parallel single-qubit tomography with maximum likelihood estimation density matrix reconstruction is used in order to compute the mixed-state density matrices of the clone qubits, and clone quality is measured using quantum fidelity. These results present one of the largest and most comprehensive noisy intermediate-scale quantum computer experimental analyses on (single qubit) quantum telecloning to date. The clone fidelity sharply decreases to 0.5 for \n<inline-formula><tex-math>$M > 5$</tex-math></inline-formula>\n, but for \n<inline-formula><tex-math>$M=2$</tex-math></inline-formula>\n, we are able to achieve a mean clone fidelity of up to 0.79 using dynamical decoupling.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505824","citationCount":"0","resultStr":"{\"title\":\"Probing Quantum Telecloning on Superconducting Quantum Processors\",\"authors\":\"Elijah Pelofske;Andreas Bärtschi;Stephan Eidenbenz;Bryan Garcia;Boris Kiefer\",\"doi\":\"10.1109/TQE.2024.3391654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum information cannot be perfectly cloned, but approximate copies of quantum information can be generated. Quantum telecloning combines approximate quantum cloning, more typically referred to as quantum cloning, and quantum teleportation. Quantum telecloning allows approximate copies of quantum information to be constructed by separate parties, using the classical results of a Bell measurement made on a prepared quantum telecloning state. Quantum telecloning can be implemented as a circuit on quantum computers using a classical coprocessor to compute classical feedforward instructions using if statements based on the results of a midcircuit Bell measurement in real time. We present universal symmetric optimal \\n<inline-formula><tex-math>$1 \\\\rightarrow M$</tex-math></inline-formula>\\n telecloning circuits and experimentally demonstrate these quantum telecloning circuits for \\n<inline-formula><tex-math>$M=2$</tex-math></inline-formula>\\n up to \\n<inline-formula><tex-math>$M=10$</tex-math></inline-formula>\\n, natively executed with real-time classical control systems on IBM Quantum superconducting processors, known as dynamic circuits. We perform the cloning procedure on many different message states across the Bloch sphere, on seven IBM Quantum processors, optionally using the error suppression technique X–X sequence digital dynamical decoupling. Two circuit optimizations are utilized: one that removes ancilla qubits for \\n<inline-formula><tex-math>$M=2, 3$</tex-math></inline-formula>\\n, and one that reduces the total number of gates in the circuit but still uses ancilla qubits. Parallel single-qubit tomography with maximum likelihood estimation density matrix reconstruction is used in order to compute the mixed-state density matrices of the clone qubits, and clone quality is measured using quantum fidelity. These results present one of the largest and most comprehensive noisy intermediate-scale quantum computer experimental analyses on (single qubit) quantum telecloning to date. The clone fidelity sharply decreases to 0.5 for \\n<inline-formula><tex-math>$M > 5$</tex-math></inline-formula>\\n, but for \\n<inline-formula><tex-math>$M=2$</tex-math></inline-formula>\\n, we are able to achieve a mean clone fidelity of up to 0.79 using dynamical decoupling.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505824\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10505824/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10505824/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
量子信息无法完美克隆,但可以生成量子信息的近似副本。量子远程克隆结合了近似量子克隆(通常称为量子克隆)和量子远程传输。量子远距克隆可以利用对准备好的量子远距克隆状态进行贝尔测量的经典结果,由不同的当事人构建量子信息的近似副本。量子远程克隆可以在量子计算机上以电路的形式实现,使用经典协处理器,根据电路中段贝尔测量的结果,使用 if 语句实时计算经典前馈指令。我们提出了通用对称最优1美元/rightarrow M美元远程克隆电路,并在实验中演示了这些M=2美元到M=10美元的量子远程克隆电路,在IBM量子超导处理器(称为动态电路)上使用实时经典控制系统原生执行。我们在七台 IBM 量子处理器上对布洛赫球上的许多不同信息状态执行克隆程序,可选择使用误差抑制技术 X-X 序列数字动态解耦。我们采用了两种电路优化方法:一种是在 $M=2、3$ 时移除辅助量子比特,另一种是减少电路中的门总数,但仍使用辅助量子比特。为了计算克隆量子比特的混合态密度矩阵,我们使用了并行单量子比特层析技术和最大似然估计密度矩阵重构技术,并使用量子保真度来测量克隆质量。这些结果展示了迄今为止对(单量子比特)量子远程克隆进行的最大规模、最全面的噪声中型量子计算机实验分析之一。对于 $M > 5$,克隆保真度急剧下降至 0.5,但对于 $M=2$,我们能够利用动态解耦实现高达 0.79 的平均克隆保真度。
Probing Quantum Telecloning on Superconducting Quantum Processors
Quantum information cannot be perfectly cloned, but approximate copies of quantum information can be generated. Quantum telecloning combines approximate quantum cloning, more typically referred to as quantum cloning, and quantum teleportation. Quantum telecloning allows approximate copies of quantum information to be constructed by separate parties, using the classical results of a Bell measurement made on a prepared quantum telecloning state. Quantum telecloning can be implemented as a circuit on quantum computers using a classical coprocessor to compute classical feedforward instructions using if statements based on the results of a midcircuit Bell measurement in real time. We present universal symmetric optimal
$1 \rightarrow M$
telecloning circuits and experimentally demonstrate these quantum telecloning circuits for
$M=2$
up to
$M=10$
, natively executed with real-time classical control systems on IBM Quantum superconducting processors, known as dynamic circuits. We perform the cloning procedure on many different message states across the Bloch sphere, on seven IBM Quantum processors, optionally using the error suppression technique X–X sequence digital dynamical decoupling. Two circuit optimizations are utilized: one that removes ancilla qubits for
$M=2, 3$
, and one that reduces the total number of gates in the circuit but still uses ancilla qubits. Parallel single-qubit tomography with maximum likelihood estimation density matrix reconstruction is used in order to compute the mixed-state density matrices of the clone qubits, and clone quality is measured using quantum fidelity. These results present one of the largest and most comprehensive noisy intermediate-scale quantum computer experimental analyses on (single qubit) quantum telecloning to date. The clone fidelity sharply decreases to 0.5 for
$M > 5$
, but for
$M=2$
, we are able to achieve a mean clone fidelity of up to 0.79 using dynamical decoupling.