IEEE Transactions on Quantum Engineering最新文献

筛选
英文 中文
Multistream BertGCN for Sentiment Classification Based on Cross-Document Learning 基于跨文档学习的多流BertGCN情感分类
IEEE Transactions on Quantum Engineering Pub Date : 2023-11-13 DOI: 10.1155/2023/3668960
Meng Li, Yujin Xie, Weifeng Yang, Shenyu Chen
{"title":"Multistream BertGCN for Sentiment Classification Based on Cross-Document Learning","authors":"Meng Li, Yujin Xie, Weifeng Yang, Shenyu Chen","doi":"10.1155/2023/3668960","DOIUrl":"https://doi.org/10.1155/2023/3668960","url":null,"abstract":"Very recently, the BERT graph convolutional network (BertGCN) model has attracted much attention from researchers due to its good text classification performance. However, just using original documents in the corpus to construct the topology of graphs for GCN-based models may lose some effective information. In this paper, we focus on sentiment classification, an important branch of text classification, and propose the multistream BERT graph convolutional network (MS-BertGCN) for sentiment classification based on cross-document learning. In the proposed method, we first combine the documents in the training set based on within-class similarity. Then, each heterogeneous graph is constructed using a group of combinations of documents for the single-stream BertGCN model. Finally, we construct multistream-BertGCN (MS-BertGCN) based on multiple heterogeneous graphs constructed from different groups of combined documents. The experimental results show that our MS-BertGCN model outperforms state-of-the-art methods on sentiment classification tasks.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"22 17","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136281983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiuser Entanglement Distribution in Quantum Networks Using Multipath Routing 量子网络中使用多路径路由的多用户纠缠分发
IEEE Transactions on Quantum Engineering Pub Date : 2023-11-02 DOI: 10.1109/TQE.2023.3329714
Evan Sutcliffe;Alejandra Beghelli
{"title":"Multiuser Entanglement Distribution in Quantum Networks Using Multipath Routing","authors":"Evan Sutcliffe;Alejandra Beghelli","doi":"10.1109/TQE.2023.3329714","DOIUrl":"10.1109/TQE.2023.3329714","url":null,"abstract":"Quantum networks facilitate numerous applications including secure communication and distributed quantum computation by performing entanglement distribution. For some multiuser quantum applications, access to a shared multipartite state is required. We consider the problem of designing protocols for distributing such states, at an increased rate. For this, we propose three protocols that leverage multipath routing to increase the distribution rate for multiuser applications. The protocols are evaluated on quantum networks with noisy intermediate scale quantum (NISQ) constraints, including limited quantum memories and probabilistic entanglement generation. Simulation results show that the developed protocols achieve an exponential increase in the distribution rate of multipartite states compared to single-path routing techniques, with a maximum increase of four orders of magnitude for the cases studied. Furthermore, the relative increase in the distribution rate was also found to improve for larger sets of users. When the protocols were tested in scaled-down real-world topologies, it was found that a topology had a significant effect on the multipartite state distribution rates achieved by the protocols. Finally, we found that the benefits of multipath routing are maximum for short quantum memory decoherence times and intermediate values of entanglement generation probability. Hence, the protocols developed can benefit NISQ quantum network control and design.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10305417","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134891543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Proposed Quantum Framework for Low-Complexity Quantum Simulation and Spectrum Estimation of Hankel-Patterned Systems 一种用于hankel模式系统低复杂度量子模拟和频谱估计的量子框架
IEEE Transactions on Quantum Engineering Pub Date : 2023-11-01 DOI: 10.1109/TQE.2023.3329213
Mostafizur Rahaman Laskar;Amit Kumar Dutta
{"title":"A Proposed Quantum Framework for Low-Complexity Quantum Simulation and Spectrum Estimation of Hankel-Patterned Systems","authors":"Mostafizur Rahaman Laskar;Amit Kumar Dutta","doi":"10.1109/TQE.2023.3329213","DOIUrl":"10.1109/TQE.2023.3329213","url":null,"abstract":"The structured matrix completion problem (SMCP) is ubiquitous in several signal processing applications. In this article, we consider a fixed pattern, namely, the Hankel-structure for the SMCP under quantum formalism. By exploiting its structure, a lower-gate-complexity quantum circuit realization of a Hankel system is demonstrated. Further, we propose a quantum simulation algorithm for the Hankel-structured Hamiltonian with an advantage in quantum gate-operation complexity in comparison with the standard quantum Hamiltonian simulation technique. We show its application in eigenvalue spectrum estimation for signal processing applications. An error bound associated with this proposed quantum evolution is proposed with the consideration of spectrum estimation and measurement uncertainty. Numerical results are reported adopting random matrix theory in its fold to evaluate the efficacy of the proposed architecture and algorithm for large-dimensional systems, including an example application in delay estimation for ranging operations in a wireless communication system.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-18"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10304328","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135363112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous-Variable Pairwise Entanglement Based on Optoelectromechanical System 基于光电系统的连续变量成对纠缠
IEEE Transactions on Quantum Engineering Pub Date : 2023-10-31 DOI: 10.1155/2023/8993363
Qizhi Cai, Jinkun Liao, Qiang Zhou
{"title":"Continuous-Variable Pairwise Entanglement Based on Optoelectromechanical System","authors":"Qizhi Cai, Jinkun Liao, Qiang Zhou","doi":"10.1155/2023/8993363","DOIUrl":"https://doi.org/10.1155/2023/8993363","url":null,"abstract":"We show how to generate stationary continuous-variable pairwise entanglement between microwave modes in a hybrid optoelectromechanical system, which consists of a single Fabry–Pérot cavity, a parallel-plate capacitor with a moving element as the mechanical resonator, and several pairs of microwave cavities. The optical mode and mechanical resonator are coupled via radiation pressure; meanwhile, several pairs of the microwave mode and mechanical resonator are capacitively coupled. Under an experimentally reachable parameter regime, we show the influence of different key parameters on pairwise entanglement and find that it is also robust against temperature. Our model and results are expected to provide a new perspective on quantum networks with increasingly large scales, quantum internet with multiple local users, and multiport microwave quantum illumination radar.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135871111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Approximate Bayesian Optimization Algorithms With Two Mixers and Uncertainty Quantification 双混频器和不确定性量化的量子近似贝叶斯优化算法
IEEE Transactions on Quantum Engineering Pub Date : 2023-10-25 DOI: 10.1109/TQE.2023.3327055
Jungin E. Kim;Yan Wang
{"title":"Quantum Approximate Bayesian Optimization Algorithms With Two Mixers and Uncertainty Quantification","authors":"Jungin E. Kim;Yan Wang","doi":"10.1109/TQE.2023.3327055","DOIUrl":"10.1109/TQE.2023.3327055","url":null,"abstract":"The searching efficiency of the quantum approximate optimization algorithm is dependent on both the classical and quantum sides of the algorithm. Recently, a quantum approximate Bayesian optimization algorithm (QABOA) that includes two mixers was developed, where surrogate-based Bayesian optimization is applied to improve the sampling efficiency of the classical optimizer. A continuous-time quantum walk mixer is used to enhance exploration, and the generalized Grover mixer is also applied to improve exploitation. In this article, an extension of the QABOA is proposed to further improve its searching efficiency. The searching efficiency is enhanced through two aspects. First, two mixers, including one for exploration and the other for exploitation, are applied in an alternating fashion. Second, uncertainty of the quantum circuit is quantified with a new quantum Matérn kernel based on the kurtosis of the basis state distribution, which increases the chance of obtaining the optimum. The proposed new two-mixer QABOA's with and without uncertainty quantification are compared with three single-mixer QABOA's on five discrete and four mixed-integer problems. The results show that the proposed two-mixer QABOA with uncertainty quantification has the best performance in efficiency and consistency for five out of the nine tested problems. The results also show that QABOA with the generalized Grover mixer performs the best among the single-mixer algorithms, thereby demonstrating the benefit of exploitation and the importance of dynamic exploration–exploitation balance in improving searching efficiency.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10296859","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134980312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Cost and Power Feasibility Analysis of Quantum Annealing for NextG Cellular Wireless Networks 下一代蜂窝无线网络量子退火的成本和功耗可行性分析
IEEE Transactions on Quantum Engineering Pub Date : 2023-10-23 DOI: 10.1109/TQE.2023.3326469
Srikar Kasi;Paul Warburton;John Kaewell;Kyle Jamieson
{"title":"A Cost and Power Feasibility Analysis of Quantum Annealing for NextG Cellular Wireless Networks","authors":"Srikar Kasi;Paul Warburton;John Kaewell;Kyle Jamieson","doi":"10.1109/TQE.2023.3326469","DOIUrl":"10.1109/TQE.2023.3326469","url":null,"abstract":"In order to meet mobile cellular users' ever-increasing data demands, today's 4G and 5G wireless networks are designed mainly with the goal of maximizing spectral efficiency. While they have made progress in this regard, controlling the carbon footprint and operational costs of such networks remains a long-standing problem among network designers. This article takes a long view on this problem, envisioning a NextG scenario where the network leverages quantum annealing for cellular baseband processing. We gather and synthesize insights on power consumption, computational throughput and latency, spectral efficiency, operational cost, and feasibility timelines surrounding quantum annealing technology. Armed with these data, we project the quantitative performance targets future quantum annealing hardware must meet in order to provide a computational and power advantage over complementary metal–oxide semiconductor (CMOS) hardware, while matching its whole-network spectral efficiency. Our quantitative analysis predicts, that with 82.32 \u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000s problem latency and 2.68 M qubits, quantum annealing will achieve a spectral efficiency equal to CMOS while reducing power consumption by 41 kW (45% lower) in a large MIMO base station with 400-MHz bandwidth and 64 antennas, and a 160-kW power reduction (55% lower) using 8.04 M qubits in a centralized radio access network setting with three large MIMO base stations.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10290945","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135153015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Scalable QKD Postprocessing System With Reconfigurable Hardware Accelerator 可扩展的QKD后处理系统与可重构的硬件加速器
IEEE Transactions on Quantum Engineering Pub Date : 2023-10-19 DOI: 10.1109/TQE.2023.3326093
Natarajan Venkatachalam;Foram P. Shingala;Selvagangai C;Hema Priya S;Dillibabu S;Pooja Chandravanshi;Ravindra P. Singh
{"title":"Scalable QKD Postprocessing System With Reconfigurable Hardware Accelerator","authors":"Natarajan Venkatachalam;Foram P. Shingala;Selvagangai C;Hema Priya S;Dillibabu S;Pooja Chandravanshi;Ravindra P. Singh","doi":"10.1109/TQE.2023.3326093","DOIUrl":"10.1109/TQE.2023.3326093","url":null,"abstract":"Key distillation is an essential component of every quantum key distribution (QKD) system because it compensates for the inherent transmission errors of a quantum channel. However, the interoperability and throughput aspects of the postprocessing components are often neglected. In this article, we propose a high-throughput key distillation framework that supports multiple QKD protocols, implemented in a field-programmable gate array (FPGA). The proposed design adapts a MapReduce programming model to efficiently process large chunks of raw data across the limited computing resources of an FPGA. We present a novel hardware-efficient integrated postprocessing architecture that offers dynamic error correction, mutual authentication with a physically unclonable function, and an inbuilt high-speed encryption application that utilizes the key for secure communication. In addition, we have developed a semiautomated high-level synthesis framework that is compatible with any discrete variable QKD system, showing promising speedup. Overall, the experimental results demonstrate a noteworthy enhancement in scalability achieved through the utilization of a single FPGA platform.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10288091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135058587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Optimization for QAOA QAOA的贝叶斯优化
IEEE Transactions on Quantum Engineering Pub Date : 2023-10-16 DOI: 10.1109/TQE.2023.3325167
Simone Tibaldi;Davide Vodola;Edoardo Tignone;Elisa Ercolessi
{"title":"Bayesian Optimization for QAOA","authors":"Simone Tibaldi;Davide Vodola;Edoardo Tignone;Elisa Ercolessi","doi":"10.1109/TQE.2023.3325167","DOIUrl":"10.1109/TQE.2023.3325167","url":null,"abstract":"The quantum approximate optimization algorithm (QAOA) adopts a hybrid quantum-classical approach to find approximate solutions to variational optimization problems. In fact, it relies on a classical subroutine to optimize the parameters of a quantum circuit. In this article, we present a Bayesian optimization procedure to fulfill this optimization task, and we investigate its performance in comparison with other global optimizers. We show that our approach allows for a significant reduction in the number of calls to the quantum circuit, which is typically the most expensive part of the QAOA. We demonstrate that our method works well also in the regime of slow circuit repetition rates and that a few measurements of the quantum ansatz would already suffice to achieve a good estimate of the energy. In addition, we study the performance of our method in the presence of noise at gate level, and we find that for low circuit depths, it is robust against noise. Our results suggest that the method proposed here is a promising framework to leverage the hybrid nature of QAOA on the noisy intermediate-scale quantum devices.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10286414","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136371790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Optimal Control of the Operating Regime of a Single-Electron Double Quantum Dot 单电子双量子点工作状态的最优控制
IEEE Transactions on Quantum Engineering Pub Date : 2023-10-16 DOI: 10.1109/TQE.2023.3324841
V. Reiher;Y. Bérubé-Lauzière
{"title":"Optimal Control of the Operating Regime of a Single-Electron Double Quantum Dot","authors":"V. Reiher;Y. Bérubé-Lauzière","doi":"10.1109/TQE.2023.3324841","DOIUrl":"https://doi.org/10.1109/TQE.2023.3324841","url":null,"abstract":"The double-quantum-dot device benefits from the advantages of both the spin and charge qubits, while offering ways to mitigate their drawbacks. Careful gate voltage modulation can grant greater spinlike or chargelike dynamics to the device, yielding long coherence times with the former and high electrical susceptibility with the latter for electrically driven spin rotations or coherent interactions with microwave photons. As this architecture is a serious contender for the realization of a versatile physical qubit, improving its control is a critical step toward building a large-scale spin-based universal quantum computer. We show that optimal control pulses generated using the gradient ascent pulse engineering algorithm can yield higher fidelity operating regime transfers than can be achieved using linear methods.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10286051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109157788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Continuous-Variable Quantum Secret Sharing in Fast-Fluctuating Channels 快速波动信道中的连续变量量子秘密共享
IEEE Transactions on Quantum Engineering Pub Date : 2023-10-09 DOI: 10.1109/TQE.2023.3322171
Fangli Yang;Daowen Qiu;Paulo Mateus
{"title":"Continuous-Variable Quantum Secret Sharing in Fast-Fluctuating Channels","authors":"Fangli Yang;Daowen Qiu;Paulo Mateus","doi":"10.1109/TQE.2023.3322171","DOIUrl":"https://doi.org/10.1109/TQE.2023.3322171","url":null,"abstract":"Recently, several continuous-variable quantum secret sharing (CV-QSS) protocols were proposed, while most of them are limited to the fiber channel systems with a relatively stable transmissivity. However, by means of complex channels, the transmissivity fluctuates dramatically in time with a probability distribution, which will lead to a fast-fluctuating attack. Therefore, the security analysis of CV-QSS in fiber channels may not apply to CV-QSS in complex channels. In this article, we study the CV-QSS protocol in the absence of uniform fast-fluctuating channels whose transmissivity changes with respect to a uniform probability distribution. We give a lower bound of secret key rate to provide security analysis against the fast-fluctuating attack for the CV-QSS protocol. In particular, the realistic highly asymmetric beam splitter (HABS) in CV-QSS protocol is investigated in detail here for the first time, and numerical simulation shows that the security bound is overestimated when the HABS is treated as the perfect device.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10274121","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109157793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信