利用近端量子计算机进行多目标优化和网络路由选择

Shao-Hen Chiew;Kilian Poirier;Rajesh Mishra;Ulrike Bornheimer;Ewan Munro;Si Han Foon;Christopher Wanru Chen;Wei Sheng Lim;Chee Wei Nga
{"title":"利用近端量子计算机进行多目标优化和网络路由选择","authors":"Shao-Hen Chiew;Kilian Poirier;Rajesh Mishra;Ulrike Bornheimer;Ewan Munro;Si Han Foon;Christopher Wanru Chen;Wei Sheng Lim;Chee Wei Nga","doi":"10.1109/TQE.2024.3386753","DOIUrl":null,"url":null,"abstract":"Multiobjective optimization is a ubiquitous problem that arises naturally in many scientific and industrial areas. Network routing optimization with multiobjective performance demands falls into this problem class, and finding good quality solutions at large scales is generally challenging. In this work, we develop a scheme with which near-term quantum computers can be applied to solve multiobjective combinatorial optimization problems. We study the application of this scheme to the network routing problem in detail, by first mapping it to the multiobjective shortest-path problem. Focusing on an implementation based on the quantum approximate optimization algorithm (QAOA)—the go-to approach for tackling optimization problems on near-term quantum computers—we examine the Pareto plot that results from the scheme and qualitatively analyze its ability to produce Pareto-optimal solutions. We further provide theoretical and numerical scaling analyses of the resource requirements and performance of QAOA and identify key challenges associated with this approach. Finally, through Amazon Braket, we execute small-scale implementations of our scheme on the IonQ Harmony 11-qubit quantum computer.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10502334","citationCount":"0","resultStr":"{\"title\":\"Multiobjective Optimization and Network Routing With Near-Term Quantum Computers\",\"authors\":\"Shao-Hen Chiew;Kilian Poirier;Rajesh Mishra;Ulrike Bornheimer;Ewan Munro;Si Han Foon;Christopher Wanru Chen;Wei Sheng Lim;Chee Wei Nga\",\"doi\":\"10.1109/TQE.2024.3386753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiobjective optimization is a ubiquitous problem that arises naturally in many scientific and industrial areas. Network routing optimization with multiobjective performance demands falls into this problem class, and finding good quality solutions at large scales is generally challenging. In this work, we develop a scheme with which near-term quantum computers can be applied to solve multiobjective combinatorial optimization problems. We study the application of this scheme to the network routing problem in detail, by first mapping it to the multiobjective shortest-path problem. Focusing on an implementation based on the quantum approximate optimization algorithm (QAOA)—the go-to approach for tackling optimization problems on near-term quantum computers—we examine the Pareto plot that results from the scheme and qualitatively analyze its ability to produce Pareto-optimal solutions. We further provide theoretical and numerical scaling analyses of the resource requirements and performance of QAOA and identify key challenges associated with this approach. Finally, through Amazon Braket, we execute small-scale implementations of our scheme on the IonQ Harmony 11-qubit quantum computer.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10502334\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10502334/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10502334/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多目标优化是一个无处不在的问题,自然出现在许多科学和工业领域。具有多目标性能需求的网络路由优化就属于这类问题,而在大规模条件下找到高质量的解决方案通常具有挑战性。在这项工作中,我们开发了一种方案,可将近期量子计算机应用于解决多目标组合优化问题。我们详细研究了该方案在网络路由问题上的应用,首先将其映射到多目标最短路径问题。我们重点研究了基于量子近似优化算法(QAOA)的实现--该算法是在近期量子计算机上解决优化问题的常用方法--我们研究了该方案产生的帕累托图,并定性分析了其产生帕累托最优解的能力。我们进一步对 QAOA 的资源需求和性能进行了理论和数值扩展分析,并确定了与这种方法相关的关键挑战。最后,通过 Amazon Braket,我们在 IonQ Harmony 11 量子计算机上小规模地实现了我们的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiobjective Optimization and Network Routing With Near-Term Quantum Computers
Multiobjective optimization is a ubiquitous problem that arises naturally in many scientific and industrial areas. Network routing optimization with multiobjective performance demands falls into this problem class, and finding good quality solutions at large scales is generally challenging. In this work, we develop a scheme with which near-term quantum computers can be applied to solve multiobjective combinatorial optimization problems. We study the application of this scheme to the network routing problem in detail, by first mapping it to the multiobjective shortest-path problem. Focusing on an implementation based on the quantum approximate optimization algorithm (QAOA)—the go-to approach for tackling optimization problems on near-term quantum computers—we examine the Pareto plot that results from the scheme and qualitatively analyze its ability to produce Pareto-optimal solutions. We further provide theoretical and numerical scaling analyses of the resource requirements and performance of QAOA and identify key challenges associated with this approach. Finally, through Amazon Braket, we execute small-scale implementations of our scheme on the IonQ Harmony 11-qubit quantum computer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信