Variational Estimation of Optimal Signal States for Quantum Channels

Leonardo Oleynik;Junaid Ur Rehman;Hayder Al-Hraishawi;Symeon Chatzinotas
{"title":"Variational Estimation of Optimal Signal States for Quantum Channels","authors":"Leonardo Oleynik;Junaid Ur Rehman;Hayder Al-Hraishawi;Symeon Chatzinotas","doi":"10.1109/TQE.2024.3393416","DOIUrl":null,"url":null,"abstract":"This article explores the performance of quantum communication systems in the presence of noise and focuses on finding the optimal encoding for maximizing the classical communication rate, approaching the classical capacity in some scenarios. Instead of theoretically bounding the ultimate capacity of the channel, we adopt a signal processing perspective to estimate the achievable performance of a physically available but otherwise unknown quantum channel. By employing a variational algorithm to estimate the trace distance between quantum states, we numerically determine the optimal encoding protocol for the amplitude damping and Pauli channels. Our simulations demonstrate the convergence and accuracy of the method with a few iterations, confirming that optimal conditions for binary quantum communication systems can be variationally determined with minimal computation. Furthermore, since the channel knowledge is not required at the transmitter or at the receiver, these results can be employed in arbitrary quantum communication systems, including satellite-based communication systems, a particularly relevant platform for the quantum Internet.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508490","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10508490/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article explores the performance of quantum communication systems in the presence of noise and focuses on finding the optimal encoding for maximizing the classical communication rate, approaching the classical capacity in some scenarios. Instead of theoretically bounding the ultimate capacity of the channel, we adopt a signal processing perspective to estimate the achievable performance of a physically available but otherwise unknown quantum channel. By employing a variational algorithm to estimate the trace distance between quantum states, we numerically determine the optimal encoding protocol for the amplitude damping and Pauli channels. Our simulations demonstrate the convergence and accuracy of the method with a few iterations, confirming that optimal conditions for binary quantum communication systems can be variationally determined with minimal computation. Furthermore, since the channel knowledge is not required at the transmitter or at the receiver, these results can be employed in arbitrary quantum communication systems, including satellite-based communication systems, a particularly relevant platform for the quantum Internet.
量子信道最佳信号状态的变量估计
本文探讨了量子通信系统在噪声情况下的性能,重点是寻找最佳编码,以最大限度地提高经典通信速率,并在某些情况下接近经典容量。我们没有从理论上限定信道的最终容量,而是从信号处理的角度来估计物理上可用但未知的量子信道的可实现性能。通过采用变分算法估算量子态之间的迹距,我们从数值上确定了振幅阻尼和保利信道的最佳编码协议。我们的仿真证明了该方法的收敛性和准确性,只需几次迭代,证实了二进制量子通信系统的最佳条件可以通过变分确定,只需最少的计算量。此外,由于发射器和接收器都不需要信道知识,这些结果可用于任意量子通信系统,包括基于卫星的通信系统,这是一个与量子互联网特别相关的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信