{"title":"Comparison of Acoustic Noise and Vibration in Ball-Bearing-Supported Motors and One-Axis Actively Positioned Single-Drive Bearingless Motor With Two Radial Permanent-Magnet Passive Magnetic Bearings","authors":"Theeraphong Srichiangsa;Surya Narayana Gunda;Hiroya Sugimoto;Yusuke Fujii;Kyohei Kiyota;Junichi Asama;Akira Chiba","doi":"10.1109/OJIA.2022.3232116","DOIUrl":"https://doi.org/10.1109/OJIA.2022.3232116","url":null,"abstract":"This study experimentally investigates the acoustic noise, vibration, and power consumption in a one-degree-of-freedom actively positioned single-drive bearingless motor, which has radial passive magnetic bearings (RPMBs) and compared to an identical stator part and rotor shaft with radial mechanical ball bearings. For the experiment, three test motors were set up: (a) a bearingless motor with two RPMB, (b) a motor with two ball bearings without an axial preload, and (c) a motor with two ball bearings with an axial preload. Motor (a) under test had one-axis active positioning and the radial movements were supported by RPMB made of cylindrical permanent magnets. Conversely, in motors (b) and (c), the radial and axial movements were supported by ball bearings, and there was no production of active axial force. The experimental results confirmed that the levels of acoustic noise, stator vibration, and input power consumption were significantly lower in motor (a) than those in motors (b) and (c). In the analysis section, dynamic models of the bearingless motor with RPMB and motor with ball bearings were designed and simulated using MATLAB \u0000<inline-formula><tex-math>$backslash$</tex-math></inline-formula>\u0000 Simulink. The low radial stiffness in RPMB was found to contribute to acoustic noise and vibration reductions. Thus, this article presents an example of a one-degree-of-freedom actively positioned bearingless motor with RPMB that realizes reductions of acoustic noise, stator vibration, and input power consumption.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"35-48"},"PeriodicalIF":0.0,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/09999318.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50350748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Candra Adi Wiguna;Yifei Cai;Lim Li Sing Sarah Lilian;Jihad Furqani;Yusuke Fujii;Kyohei Kiyota;Akira Chiba
{"title":"Vibration and Acoustic Noise Reduction in Switched Reluctance Motor by Selective Radial Force Harmonics Reduction","authors":"Candra Adi Wiguna;Yifei Cai;Lim Li Sing Sarah Lilian;Jihad Furqani;Yusuke Fujii;Kyohei Kiyota;Akira Chiba","doi":"10.1109/OJIA.2022.3229849","DOIUrl":"https://doi.org/10.1109/OJIA.2022.3229849","url":null,"abstract":"This article presents a novel method for vibration and acoustic noise reduction in a three-phase 6/10 switched reluctance motor (SRM). The test machine has major vibration and acoustic noise at the 2\u0000<inline-formula><tex-math>${text{nd}}$</tex-math></inline-formula>\u0000, 4\u0000<inline-formula><tex-math>${text{th}}$</tex-math></inline-formula>\u0000, 5\u0000<inline-formula><tex-math>${text{th}}$</tex-math></inline-formula>\u0000, 7\u0000<inline-formula><tex-math>${text{th}}$</tex-math></inline-formula>\u0000, and 8\u0000<inline-formula><tex-math>${text{th}}$</tex-math></inline-formula>\u0000 harmonics. Accordingly, a novel method called “selective radial force harmonics reduction” is proposed. The proposed method selectively reduces the specific radial force harmonics at the stator teeth. By reducing the specific radial force harmonics such as 2\u0000<inline-formula><tex-math>${text{nd}}$</tex-math></inline-formula>\u0000, 4\u0000<inline-formula><tex-math>${text{th}}$</tex-math></inline-formula>\u0000, 5\u0000<inline-formula><tex-math>${text{th}}$</tex-math></inline-formula>\u0000, 7\u0000<inline-formula><tex-math>${text{th}}$</tex-math></inline-formula>\u0000, and 8\u0000<inline-formula><tex-math>${text{th}}$</tex-math></inline-formula>\u0000, the corresponding vibration and acoustic noise can be reduced significantly in the test machine. In this study, a current calculation for the proposed method is introduced. In addition, finite element analysis and experiments are conducted to verify the effectiveness of the proposed method. Compared with a conventional square current, the experimental results show that the overall sound pressure level is reduced by 7.1 dBA using the proposed method at the rated speed and torque. The dynamic conditions of the test machine using the proposed method are also presented. As a result, the proposed method is effective in reducing vibration and acoustic noise in the three-phase 6/10 SRM.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"23-34"},"PeriodicalIF":0.0,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/09991075.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50350747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deadbeat Flux Vector Control as a One Single Control Law Operating in the Linear, Overmodulation, and Six-Step Regions With Time-Optimal Torque Control","authors":"HADI EL KHATIB;DIETER GERLING;MICHAEL SAUR","doi":"10.1109/OJIA.2022.3222852","DOIUrl":"https://doi.org/10.1109/OJIA.2022.3222852","url":null,"abstract":"This article proposes an enhanced version of the deadbeat flux vector controller (DBFC) as a one single control law that can operate in the entire torque–speed plane. The operation at any feasible modulation index can be accomplished by adequate determination of the flux trajectories at the different operating regions (e.g., PWM, overmodulation (I and II), and six-step). Continuous and seamless transition between the four operating regions is guaranteed, where the modulation index changes linearly with speed between PWM and six-step (without abrupt change in torque or acoustic problems). With the proposed strategy, undesirable torque dynamics, stability problems, and increased computational efforts associated with using multiple control laws are avoided. The transient performance of DBFC at the maximum voltage limit is analyzed in detail in the flux plane. A time-optimal torque control algorithm is developed to achieve the fastest possible torque dynamics and to considerably reduce the settling time, without the use of a voltage margin. The torque can be controlled with high accuracy and high robustness to machine parameter variations. With DBFC, no tradeoff between good steady state six-step behavior and good transient performance is needed due to the decoupling of switching and calculation frequencies. The proposed DBFC controller offers valuable features, and it is simple to implement. Simulation and experimental results are provided to validate the proposed control algorithm, which is implemented on an automotive microcontroller with a high-power/high-performance automotive traction machine.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"247-270"},"PeriodicalIF":0.0,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09954164.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50323989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Norma Anglani;Giovanna Oriti;Ruth Fish;Douglas L. Van Bossuyt
{"title":"Design and Optimization Strategy to Size Resilient Stand-Alone Hybrid Microgrids in Various Climatic Conditions","authors":"Norma Anglani;Giovanna Oriti;Ruth Fish;Douglas L. Van Bossuyt","doi":"10.1109/OJIA.2022.3201161","DOIUrl":"https://doi.org/10.1109/OJIA.2022.3201161","url":null,"abstract":"This paper presents an original two-steps methodology to size DERs (Distributed Energy Resources) in stand-alone microgrids, to be installed in different areas, featuring different meteorological conditions, but same kind of loads. Design examples are simulated to analyze how an increased level of resilience, considered in terms of number of days of autonomy after an initial incident, affects the sizing of a PV field and its storage. A practical tool to support strategic choices is methodologically illustrated and applied to two case studies to find the best configuration, which is identified by a trade-off among fuel consumption, sizes of PV arrays and resilience. Key design parameters help in designing the best system according to the location, by focusing on the newly identified key performance indicator \u0000<inline-formula><tex-math>$NPV^{s}$</tex-math></inline-formula>\u0000, the simplified net present value of specific scenarios of interest, where a penalty is introduced to account for less than the ideal target of autonomy. The model-based design used to create the microgrid simulations is validated by experimental measurements on a test-bed hybrid microgrid.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"237-246"},"PeriodicalIF":0.0,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09865121.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50323990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of Power Converters and Battery Lifetime on Economic Profitability of Residential Photovoltaic Systems","authors":"Monika Sandelic;Ariya Sangwongwanich;Frede Blaabjerg","doi":"10.1109/OJIA.2022.3198366","DOIUrl":"https://doi.org/10.1109/OJIA.2022.3198366","url":null,"abstract":"The installations of the residential photovoltaic (PV) systems with integrated battery energy storage are strongly dependent on their economic profitability. The Net Present Value (NPV), which is a metric to evaluate the cost-effectiveness of PV-battery systems, can be strongly influenced by the replacement cost. Thus, the lifetime of the reliability-critical components such as power converters and battery plays an important role and needs to be considered during the economic evaluation. In this paper, an impact of power converters and battery lifetime on the economic profitability of the PV-battery system for different installation sites is analyzed. A comprehensive model, consisting of system performance, lifetime, and economic profitability aspects as well as their interconnections is developed in this paper. A case study reveals that the NPV can be significantly over-estimated if the power converters and battery need to be replaced several times during the entire lifespan of the PV-battery system. Hence, the lifetime analysis should be included in the economic assessment and reflected with a more realistic component replacement cost during the planning stage of the residential PV-battery projects.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"224-236"},"PeriodicalIF":0.0,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09855838.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50323991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuqi Wei;Maksudul Hossain;Dereje Woldegiorgis;Xia Du;H. Alan Mantooth
{"title":"Power Relay Based Multiple Device Cryogenic Characterization Method and Results","authors":"Yuqi Wei;Maksudul Hossain;Dereje Woldegiorgis;Xia Du;H. Alan Mantooth","doi":"10.1109/OJIA.2022.3195278","DOIUrl":"https://doi.org/10.1109/OJIA.2022.3195278","url":null,"abstract":"Cryogenic power electronics is a promising technology due to their high efficiency and high power density characteristics. As the key element of power electronic systems, semiconductor performance should be evaluated under cryogenic temperatures. Liquid nitrogen or liquid helium are usually adopted to achieve cryogenic temperatures. Traditionally, only one semiconductor can be evaluated at one time under different temperatures, which is time-consuming and not energy-friendly. To enable multiple-device characterization at one time under different temperatures, a novel power relay based characterization circuit and corresponding control strategy are described. With the aid of the proposed circuit, multiple devices can be characterized by controlling the power relays. The introduced parasitics by the power relays are minimized through paralleling, which has negligible influence on the device under test (DUT). Cryogenic characterization results of the gate driver, power relay, and semiconductors are presented. Both silicon (Si) metal–oxide–semiconductor field-effect transistor (MOSFET) and silicon carbide (SiC) MOSFETs are characterized and their performances are discussed.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"211-223"},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09847049.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50323992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Connor Duggan;Xueqin Liu;Paul Brogan;Robert Best;D John Morrow
{"title":"Very Low-Frequency Oscillation Source Localization on Ireland's Power System","authors":"Connor Duggan;Xueqin Liu;Paul Brogan;Robert Best;D John Morrow","doi":"10.1109/OJIA.2022.3194140","DOIUrl":"https://doi.org/10.1109/OJIA.2022.3194140","url":null,"abstract":"This paper presents an approach for studying Very Low-Frequency Oscillations (VLFOs) between 0.03 and 0.08 Hz that have been observed on Irelands All-Island transmission system. Previous work by Ireland's TSO has found that the occurrence of the VLFO is linked to the generation dispatch of synchronous machines with governor control. This study verifies previous research by Ireland's TSO and analyses sensitivities such as inertia, system frequency and online generator status that causes an increase in VLF mode magnitude. This paper's results are based on 1-second resolution system frequency, metered generation and power system metric data from 1/1/2018 to 1/10/2020. This analysis demonstrates that the VLF oscillatory mode's stability is highly correlated if governors that consistently provide positive damping torque to the VLF mode are not synchronized. The findings from the study are demonstrated on several events on the Irish system using PMU data. The governor-based dissipating energy flow method is used to validate the relationships found from the generator status and system frequency case study.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"192-201"},"PeriodicalIF":0.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09842289.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50325621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Zauner;Christoph Hametner;Oliver König;Stefan Jakubek
{"title":"A Control Concept for Battery Emulators Using a Reference Governor With a Variable PT1-Element for Constraint Handling","authors":"Michael Zauner;Christoph Hametner;Oliver König;Stefan Jakubek","doi":"10.1109/OJIA.2022.3194083","DOIUrl":"https://doi.org/10.1109/OJIA.2022.3194083","url":null,"abstract":"This paper presents a method for highly dynamic nonlinear control of DC-DC converters with constraints used in battery emulators. Controlling this system is particularly challenging as the connected units-under-test often behave like constant power loads (CPLs), which introduce unstable system dynamics and render the system nonlinear. In order to achieve fast output dynamics with the DC-DC converters over a large operating range, a special control architecture is proposed where feedback equivalence is established between a nonlinear system description and a linear description. The nonlinear system dynamics can then be transformed into linear ones for controller synthesis by exploiting the flatness property of the system. Additionally, constraints have to be met at any time during operation to prevent damage to components. In order to satisfy the constraints, a reference governor (RG) is added to the loop. This novel RG concept uses a low-pass filter in the shape of a PT1-element to modify the voltage reference. By changing the time constant of the PT1-element, the RG is able to generate smooth constraints-aware trajectories for setpoint changes. Finally, the capabilities of the control concept are demonstrated and discussed based on high-fidelity simulations.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"202-210"},"PeriodicalIF":0.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09840906.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50323993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-Situ Measurement and Investigation of Winding Loss in High-Frequency Cored Transformers Under Large-Signal Condition","authors":"Navid Rasekh;Jun Wang;Xibo Yuan","doi":"10.1109/OJIA.2022.3193584","DOIUrl":"https://doi.org/10.1109/OJIA.2022.3193584","url":null,"abstract":"This paper presents an in-situ measurement method to accurately characterize the winding loss in high-frequency (HF) transformers, which is challenging to quantify in power electronics applications. This approach adapts the reactive voltage cancellation concept to measure the complete winding loss in HF transformers with the presence of the magnetic core and the load on the secondary side, while this concept was originally brought up for core loss measurement. As an in-situ method, the proposed testing method can factor in the non-linear winding loss elements impacted by the magnetic field interaction between the windings and the core under the large-signal operation, which are not properly assessed in existing approaches. The presented method significantly reduces the sensitivity of the measurement errors linked to the probe phase discrepancy, since the resistive winding loss is well separated out from the core loss. The acquired experimental results are compared and verified with other common empirical measurement methods and three-dimensional (3D) finite element analysis (FEA). As the finding, the measured winding AC resistance is found to be correlated with the load level. Furthermore, treating the complex winding loss and core loss as a black-box problem, this paper proposes a “total loss map” as an engineering solution to practically distribute the measured loss data of magnetic components to the end-users to enable quick and accurate loss estimation/modelling.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"164-177"},"PeriodicalIF":0.0,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09839507.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50325631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayman Al Zawaideh;Khalifa Al Hosani;Igor Boiko;Mohammad Luai Hammadih
{"title":"Minimum Energy Adaptive Load Sharing of Parallel Operated Compressors","authors":"Ayman Al Zawaideh;Khalifa Al Hosani;Igor Boiko;Mohammad Luai Hammadih","doi":"10.1109/OJIA.2022.3192565","DOIUrl":"https://doi.org/10.1109/OJIA.2022.3192565","url":null,"abstract":"Compressors operating in parallel are widely used in compressor stations on natural gas pipelines to address the required flow demands. This paper presents a design of a new control structure and a load sharing optimal adaptive controller for multiple compressors connected in parallel and equipped with variable speed drives. The load sharing optimization (LSO) controller computes the split factor to distribute the flow among the compressors which depends on the current operating conditions, with the optimization's objective being to minimize the total energy consumption. In addition, the compressor maps are continuously updated to account for any changes due to external and untraceable factors resulting in an enhancement of the LSO. The presented control structure includes a common single controller for parallel compressors, which eliminates the need for loop-decoupling. Thus, ensuring a better stability and a faster dynamics with respect to the flow or pressure process variable. The proposed control structure and the adaptive LSO performance is evaluated through simulations and a lab hardware setup. The results show an improvement of more than 4% in the total energy consumption compared to an equal load sharing scheme and more than 2.5% compared to the equal distance to surge industrial scheme. This efficiency improvement leads to significant energy cost saving over large periods of time.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"178-191"},"PeriodicalIF":0.0,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09834116.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50325622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}