Mariam Saeed;Juan Manuel Guerrero;Victor Lopez;David Ortega;Igor Larrazabal;Juan Jose Valera;Ewald Falke;Fernando Briz
{"title":"Model-Based Risk Assessment of Power Converters: Case Study of On-Board Battery System for Railway","authors":"Mariam Saeed;Juan Manuel Guerrero;Victor Lopez;David Ortega;Igor Larrazabal;Juan Jose Valera;Ewald Falke;Fernando Briz","doi":"10.1109/OJIA.2025.3564730","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3564730","url":null,"abstract":"On-board energy storage systems for railway traction are becoming a clear trend for many new rail projects, both for retrofit and new designs. This has raised safety and reliability concerns in railway industry given the novelty of the technology. <italic>Reliability analysis</i> is mostly based on detailed modeling of the physics of failure. However, it is thought for system optimization and does not consider catastrophic and human factor failures. On the other hand, <italic>risk assessment</i> studies are widely used for identifying, analyzing and prioritizing all possible modes of failure. However, they are not based on systems models and are not extendable to other converter topologies or battery configurations. To overcome the limitations of the two aforementioned approaches, this article proposes a method for risk assessment based on systems models. The proposed methodology is applied to study the critical risks of using a multilevel converter topology integrating a configuration of two series low-voltage (<inline-formula><tex-math>$< $</tex-math></inline-formula>1 kV) traction batteries to the dc bus of a train. The proposed approach is directly extendable to any converter topology or battery configuration.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"221-236"},"PeriodicalIF":7.9,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10977972","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143929734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paychuda Kritprajun;Leon M. Tolbert;Elizabeth Sutton;Yunting Liu;Jingxin Wang;Nattapat Praisuwanna;Maximiliano Ferrari
{"title":"Converter-Based Supercapacitor Emulator for Photovoltaic Applications","authors":"Paychuda Kritprajun;Leon M. Tolbert;Elizabeth Sutton;Yunting Liu;Jingxin Wang;Nattapat Praisuwanna;Maximiliano Ferrari","doi":"10.1109/OJIA.2025.3563688","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3563688","url":null,"abstract":"As the utilization of supercapacitors (SCs) in power system applications continues to increase, it is important to observe their behavior under transient and long-term operations to understand their impact on power grids. A real-time reconfigurable hardware testbed (HTB) is a power network emulator that provides flexibility in studying various power system scenarios. This work presents an emulation of a SC for a photovoltaic (PV) system on the HTB platform such that its dynamic behavior during power system scenarios can be observed. The developed emulator on the HTB is verified by comparing the emulation results with the model developed in MATLAB/Simulink. An improvement of grid frequency support control is proposed to enable fast-frequency recovery service provided by a grid-connected PV with SC system. The experimental results of the emulator are consistent with the simulation results under grid support scenarios. This SC emulator can potentially be used for various power system scenarios supporting other research in addition to the PV applications presented in this article.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"178-190"},"PeriodicalIF":7.9,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10978069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anant Narula;Massimo Bongiorno;Paolo Mattavelli;Mebtu Beza;Jan R. Svensson;Wentao Liu
{"title":"Evaluation and Comparison of Small-Signal Characteristics of Grid-Forming Converter Systems in Two Different Reference Frames","authors":"Anant Narula;Massimo Bongiorno;Paolo Mattavelli;Mebtu Beza;Jan R. Svensson;Wentao Liu","doi":"10.1109/OJIA.2025.3564501","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3564501","url":null,"abstract":"The increasing penetration of converter-interfaced generation units results in a frequency-weak power system characterized by decreasing system inertia. Consequently, the angular frequency of the power system may deviate from its nominal value, with its dynamics significantly influenced by the various control loops of converters. To accurately conduct small-signal analysis of such power systems, two impedance-based modeling approaches have been proposed in recent years. The first approach derives small-signal models in a synchronously rotating reference frame, also referred to as the <italic>dq</i>-frame, which is defined by the power system's nominal angular frequency. This method characterizes individual converter systems using only their <italic>dq</i>-domain impedance matrix. The second approach, on the other hand, develops small-signal models in a <italic>dq</i>-frame defined by the dynamic angular frequency of the power system. In this case, converter systems are characterized not only by their <italic>dq</i>-impedance matrix but also by an additional transfer matrix that relates variations in the output current to variations in the power system's angular frequency. This leads to different closed-loop transfer matrices for the two approaches, which are used to assess small-signal stability. This article shows, using the derived analytical models, that despite the differences in the closed-loop transfer matrices, the two impedance-based modeling approaches are equivalent and lead to the same conclusions regarding the small-signal stability of the overall system. However, the second approach offers better physical insight into the behavior of converter systems during disturbances. Experimental results are provided to validate the theoretical analysis.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"206-220"},"PeriodicalIF":7.9,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10976625","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrei Tregubov;Petros Karamanakos;Ludovico Ortombina
{"title":"Long-Horizon Direct Model Predictive Control for Medium-Voltage Converters Connected to a Distorted Grid","authors":"Andrei Tregubov;Petros Karamanakos;Ludovico Ortombina","doi":"10.1109/OJIA.2025.3563502","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3563502","url":null,"abstract":"Long-horizon finite control set model predictive control (FCS-MPC) is known for its superior performance, particularly when applied to complex, higher order systems, such as grid-connected converters with <inline-formula><tex-math>$LCL$</tex-math></inline-formula> filters. This article proposes a long-horizon FCS-MPC method that effectively operates such systems even in the presence of time-varying model parameters and distorted grid voltage with variable harmonic content. To do so, the proposed method incorporates information about the grid voltage distortion when generating the reference trajectories of the controlled variables, namely, the grid and converter currents and the filter capacitor voltage. In addition, a fast estimation algorithm continuously updates the grid- and converter-side reactances, thus ensuring robustness to parameter variations in the system model. Real-time tests conducted in a hardware-in-the-loop environment validate the effectiveness of the proposed control approach across various operating conditions.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"191-205"},"PeriodicalIF":7.9,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10974479","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sequential Design Process of a 350-kW Class Dual Three-Phase IPMSM for a Wheeled Armored Vehicle","authors":"Ji-Chang Son;Min-Su Kwon;Dong-Kuk Lim","doi":"10.1109/OJIA.2025.3562868","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3562868","url":null,"abstract":"Optimal design of a traction motor is a complex process, as various requirements and constraints need to be satisfied. In addition, consideration of various physical aspects, such as stress and heat, is necessary to ensure the stability of the motor, including mechanical rigidity and insulation breakdown. In this article, to derive the optimal design of an interior permanent magnet synchronous motor (IPMSM), a novel sequential design process consisting of conceptual design, detailed design, and optimal design is proposed. The conceptual design enables the rapid execution of multiple case studies, as static electromagnetic analysis is used. The overall geometric parameters are determined through electromagnetic analysis in the detailed design stage and an initial model that satisfies the requirements is derived. Finally, in the optimal design stage, the optimal model is quickly derived using a machine learning method, and the stability of the model is examined through multiphysics analysis. To validate the applicability to the practical motor, design optimization for a 350-kW class dual three-phase IPMSM for a wheeled armored vehicle is conducted, and the feasibility of the proposed method is verified based on the experimental results of the manufactured prototype.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"237-248"},"PeriodicalIF":7.9,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10971876","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143929735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Samiullah;Mohammed Al-Hitmi;Ali T. Al Awami;Shirazul Islam;Atif Iqbal
{"title":"Wide Range Voltage Scaling Converter With Extended Duty and Low Voltage Stress for a DC Microgrid Applications","authors":"Md Samiullah;Mohammed Al-Hitmi;Ali T. Al Awami;Shirazul Islam;Atif Iqbal","doi":"10.1109/OJIA.2025.3555529","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3555529","url":null,"abstract":"DC–DC converters hold immense importance due to their diverse applications, making it critical to design them in accordance with the demanding operational requirements. Conventional boost converters face significant challenges at high voltage levels, requiring excessively high duty cycles that lead to increased component stress, switching transients and losses, electromagnetic interference (EMI), and diode reverse recovery issues. This article presents the design of a new voltage scaling converter with applications in high-voltage scenarios, such as the integration of solar photovoltaic (PV) systems into a high-voltage dc bus within a microgrid. The proposed converter features an extendable design and flexible control, enabled by the incorporation of dual duty cycles, allowing for a broader range of operational flexibility. The converter simultaneously achieves high voltage gain, reduced component stress, continuous input current, high power density, and a wide range of feasible duty ratios. The utilization of multiple passive elements is analytically verified by studying variations in parameters, such as the presence of inductors with different values. Finally, the converter's performance is validated through experiments conducted on a 600 W prototype operating at a frequency of 50 kHz. In addition, the closed-loop operation of the converter is validated by its ability to maintain a regulated 400 V dc bus voltage, despite variations in the input voltage.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"162-177"},"PeriodicalIF":7.9,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10944579","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143845586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-Stage Single-Phase Isolated Full-Bridge Buck–Boost DC–AC Inverters","authors":"Usman Ali Khan;Ashraf Ali Khan;Jung-Wook Park","doi":"10.1109/OJIA.2025.3554485","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3554485","url":null,"abstract":"This article presents a simple high-frequency transformer (HFT) isolated buck–boost inverter designed for single-phase applications. The proposed HFT isolated inverter, with its full-bridge buck–boost topology, provides a wider voltage regulation range. It can efficiently step up or step down the input voltage to achieve the desired output ac voltage. It provides galvanic isolation between the input and output sides. This feature ensures safety and compatibility with applications that require isolation, such as renewable energy systems and electric vehicle charging. It utilizes a solitary output inductor, an HFT for isolation, and ensures that only one switch is switching at a high frequency at a time. This novel inverter design obviates the requirements for a 50/60 Hz low-frequency transformer, consequently enhancing the power density. To validate the theoretical findings, an experimental prototype of the proposed inverter with output voltage ac voltage of peak 155.5 V, line frequency 60 Hz, and an output power of 0.5 kW is implemented. Extensive experimental tests are conducted under various operating conditions. The experimental results validate the theoretical analysis and confirm the practical viability and effectiveness of the proposed topology.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"148-161"},"PeriodicalIF":7.9,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938598","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143801011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rapid Magnetic, Thermal, and Structural Scaling of Synchronous Machines Based on Flux and Loss Maps","authors":"Simone Ferrari;Gaetano Dilevrano;Paolo Ragazzo;Gianmario Pellegrino;Timothy Burress","doi":"10.1109/OJIA.2025.3545475","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3545475","url":null,"abstract":"In this article, we introduce a rapid and accurate method for scaling permanent magnet synchronous machines using flux linkage and loss maps. The method enables the design and comprehensive characterization of scaled machines to meet new specifications for peak torque, power, maximum operating speed, voltage, and current requirements without the need for finite-element simulations. The efficiency map of the scaled machine can be computed with negligible computational effort. The analysis encompasses the scaling of the liquid cooling jacket setup and evaluates the continuous stall torque of the final machine. Furthermore, the method addresses scaling rules for demagnetization current limits, peak short-circuit currents and uncontrolled generator voltages, allowing the evaluation of the safest shut-down strategy against the different fault scenarios. The use of the stack length versus number of turns selection plane facilitates the visualization of the key performance figures and the minimization of the stack length while adhering to inverter voltage and current constraints. Overall, this scaling method offers a streamlined approach to the preliminary design of e-motors and facilitates system-level optimization studies. The method is showcased by scaling the e-motor of the BMW i3 to meet the specifications of the moto-generator 2 of the 4th generation Toyota Prius.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"137-147"},"PeriodicalIF":7.9,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10902191","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hossein Gholizadeh;Mojtaba Hajihosseini;Saman A. Gorji
{"title":"A Family of Transformerless Boost Converters for Pulsed Electrolysis","authors":"Hossein Gholizadeh;Mojtaba Hajihosseini;Saman A. Gorji","doi":"10.1109/OJIA.2025.3541720","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3541720","url":null,"abstract":"This article introduces a family of nonisolated dc–dc converters designed to amplify lower dc voltages to higher levels. These converters are particularly suitable for use in the dc link of pulse converters in hydrogen electrolyzers. The primary structure serves as a base for additional configurations with greater voltage amplification and reduced component stress. Two supplementary categories are examined based on the main structure, offering improved functionalities, and decreased pressures. The proposed topologies' specific parameters are evaluated in both ideal and nonideal operating scenarios. In addition, thorough comparisons are made among the converters from various perspectives. These topologies feature a single switch and minimal voltage stress, which provides a significant advantage in high-voltage scenarios by limiting the number of switches and their associated stresses. This study achieves a notable increase in voltage amplification without relying on high-frequency transformers, resulting in increased power density and reduced volume and mass. To validate the proposed designs, experimental findings are provided and compared with theoretical predictions.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"120-136"},"PeriodicalIF":7.9,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10884882","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mauro Di Nardo;Gianvito Gallicchio;Francesco Cupertino;Marco Palmieri;Mohammad Reza Ilkhani;Michele Degano;Chris Gerada
{"title":"High Speed Synchronous Machines: Technologies and Limits","authors":"Mauro Di Nardo;Gianvito Gallicchio;Francesco Cupertino;Marco Palmieri;Mohammad Reza Ilkhani;Michele Degano;Chris Gerada","doi":"10.1109/OJIA.2025.3531227","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3531227","url":null,"abstract":"This article presents a comprehensive comparison of high-speed synchronous machines, encompassing synchronous reluctance, its permanent magnet variant, and surface permanent magnet synchronous motors. The evaluation of their maximum performance capabilities employs a hybrid analytical-finite element design procedure able to address electromagnetic, thermal, and structural requirements simultaneously. Indeed, the adopted design methodology takes into account all the machines nonlinearities, while also including the limitations introduced by the iron ribs of the reluctance machine, retaining sleeve of the surface permanent magnet machine and increasing iron losses. The aim of the outlined design exercise is to evaluate the effect of different design specifications on the maximum achievable performance of the three machine topologies. A wide range of maximum design speeds, airgap thicknesses, and cooling system capabilities has been assessed showing when and why one motor type outperforms the others. The cooling system capability increment required by the reluctance-based machines to achieve the performance of the surface permanent magnet one has been systematically quantified. The design assumptions have been verified by a thermal analysis supporting the final machine selection. Three different machines designed with a maximum speed of 80 kr/min have been prototyped and tested on an instrumented test rig, validating all the design considerations.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"93-106"},"PeriodicalIF":7.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10844533","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}