Valdecir J. De Paris;Marco di Benedetto;Gierri Waltrich;Alessandro Lidozzi;Luca Solero
{"title":"State-of-the-Art of CSR Design for Novel Applications Trend","authors":"Valdecir J. De Paris;Marco di Benedetto;Gierri Waltrich;Alessandro Lidozzi;Luca Solero","doi":"10.1109/OJIA.2024.3522564","DOIUrl":"https://doi.org/10.1109/OJIA.2024.3522564","url":null,"abstract":"Among the converters currently employed for ac–dc conversion, diode rectifiers (DRs) and voltage source rectifiers are the most prevalent due to their accessibility, cost-effectiveness, and efficiency. However, current source rectifiers (CSRs) present several advantages, such as short-circuit protection, step-down capabilities, minimal output current ripple, and the elimination of dc bus capacitors. These features can lead to a reduction in overall size and an enhancement in power quality, although CSRs are often associated with higher conversion losses. Recent advancements in applications that can leverage the benefits of CSRs, along with the development of new devices to improve their efficiency, have produced renewed interest in this configuration. This article aims to review the design parameters of CSR components, modulation schemes, and control strategies, while also conducting a loss analysis using both established literature methods and innovative approaches developed by the authors. In addition, a comparison with other topologies is presented, illustrating that in certain applications and conditions, CSRs can be a compelling choice. Thus, rather than focusing on a specific aspect of CSRs, this article provides a comprehensive overview of the topic, offering practical insights for engineers.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"34-47"},"PeriodicalIF":7.9,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Open Journal of Industry Applications Information for Authors","authors":"","doi":"10.1109/OJIA.2024.3511057","DOIUrl":"https://doi.org/10.1109/OJIA.2024.3511057","url":null,"abstract":"","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"C3-C3"},"PeriodicalIF":7.9,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10778401","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saad Ahmad;Mariam Saeed;Juan Manuel Guerrero;Iker Muniategui-Aspiazu;Guillermo Nuñez;Igor Larrazabal;Fernando Briz
{"title":"Priority-Based DC-Link Voltage Control for Railway Traction Chains With Onboard Energy Storage","authors":"Saad Ahmad;Mariam Saeed;Juan Manuel Guerrero;Iker Muniategui-Aspiazu;Guillermo Nuñez;Igor Larrazabal;Fernando Briz","doi":"10.1109/OJIA.2024.3501072","DOIUrl":"https://doi.org/10.1109/OJIA.2024.3501072","url":null,"abstract":"Due to the rapid development of power electronics and energy storage technologies, the trend toward electrified railway systems with onboard energy storage systems (OESS) is being followed by main train manufactures. In such systems, the control of the dc-link can be critical for stability and optimal power sharing between different energy sources. This paper presents a dc-link control strategy intended for OESS-based traction chains. A distinguishing characteristic of the proposed method is its ability to smoothly share the power demand among the available power sources, including the kinetic energy of the train, based on predefined priority levels. The control smoothly reacts to changes in the power limits, including no power, of the available energy sources, without modifying the control structure and with negligible variations of dc-link voltage. Simulation results are provided using a real train model with an onboard battery system. Finally, the proposed control is validated on a hardware prototype.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"1-14"},"PeriodicalIF":7.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10755978","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Performance Voltage-Boost Switched-Coupled-Inductor DC–DC Converters Deduced From Impedance Source Networks","authors":"Yuliang Ji;Lina Geng","doi":"10.1109/OJIA.2024.3490592","DOIUrl":"https://doi.org/10.1109/OJIA.2024.3490592","url":null,"abstract":"This article proposes a switched-coupled-inductor impedance source network integrating capacitor-winding-diode technology. Next, voltage-boost switched-coupled-inductor dc–dc converters based on the proposed impedance source network are deduced out. The proposed dc–dc converters can obtain higher voltage gain and own common ground. Also, input currents of the proposed converters are continuous, which is beneficial of input power. Compared to conventional impedance source dc–dc converters, the proposed converters can have the higher boost ability and largely reduce the voltage stresses across switches in the same voltage gain. Theoretical analysis including operation principles, voltage gain derivations, stress analysis, parameter design, efficiency analysis, and feature comparisons of the proposed topologies are given. The specific experimental results are shown to verify the aforementioned analysis.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"479-488"},"PeriodicalIF":7.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10745237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strategy Optimization by Means of Evolutionary Algorithms With Multiple Closing Criteria for Energy Trading","authors":"Silvia Trimarchi;Fabio Casamatta;Francesco Grimaccia;Marco Lorenzo;Alessandro Niccolai","doi":"10.1109/OJIA.2024.3488857","DOIUrl":"https://doi.org/10.1109/OJIA.2024.3488857","url":null,"abstract":"The energy markets are experiencing an enhanced volatility and unpredictability due to the growing integration of renewable energy sources in the grid and to the unstable geopolitical situation that is developing worldwide. Energy traders are therefore raising concerns on how to achieve solutions that not only ensure stability in terms of energy needs, both on the supply and demand side, but also enable profits within these markets. To cope with the complexity of this emerging scenario, tools that support traders in their decisions, such as algorithmic trading strategies, are attracting always more and more attention. In particular, evolutionary algorithms have emerged as an effective tool for developing robust and innovative trading strategies. Indeed, their flexibility and adaptability allow for the inclusion of various performance metrics. This article employs a recently issued evolutionary algorithm, called social network optimization, to identify the optimal closing criteria of already opened positions in an energy commodity market. More specifically, the proposed trading strategy is based on five self-defined parameters, which determine a profitable solution over nearly six years of available data. In particular, the overall average positive return achieved and the maximum monthly yield of 1.9% highlight the adaptability and robustness of the developed algorithmic trading strategy. Therefore, the results suggest the potentialities of developing and upgrading novel trading strategies by exploiting evolutionary computation techniques in the actual complex energy markets.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"469-478"},"PeriodicalIF":7.9,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10740313","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A SiC Based Two-Stage Pulsed Power Converter System for Laser Diode Driving and Other Pulsed Current Applications","authors":"Raj Kumar Kokkonda;Subhashish Bhattacharya;Victor Veliadis;Chrysanthos Panayiotou","doi":"10.1109/OJIA.2024.3476428","DOIUrl":"https://doi.org/10.1109/OJIA.2024.3476428","url":null,"abstract":"High-power laser diodes (LDs) are used in various military, medical, and industrial applications. In this article, the unique driving requirements of a high power pulsed LD array have been presented, and the required converter architecture has been discussed. A two-stage capacitive energy storage based pulsed power converter system consisting of a phase shifted full bridge (PSFB) based capacitor charging power supply (CCPS) and a buck based pulse current source with inductor energy recovery has been adopted. SiC FETs have been employed to increase the pulsed power capability of the switching regulator based pulse current source as an alternative to the conventionally used linear current driver. A reconfigured pulse forming circuit has been proposed for the pulse current source, which mitigates the effect of the output parasitic inductance on the LD without the need for an additional freewheeling diode across the load. The impact of inductor energy recovery on the semiconductor device's transient thermal stress in the pulse current source has been investigated. The tradeoff between the energy storage capacitance and the filter inductor in the pulse current source has been studied. A pulsed LD driver capable of driving 280 V LD arrays has been designed, and a hardware prototype has been built. The complete system has been experimentally demonstrated by generating 50 A current pulses at 250 V output voltage, validating the proposed converter configuration for high pulsed power LD driving applications.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"455-468"},"PeriodicalIF":7.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10711203","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yifei Cai;Fares S. El-Faouri;Akira Chiba;Souichiro Yoshizaki
{"title":"Magnetostriction Effect on Vibration and Acoustic Noise in Permanent Magnet Synchronous Motors","authors":"Yifei Cai;Fares S. El-Faouri;Akira Chiba;Souichiro Yoshizaki","doi":"10.1109/OJIA.2024.3476193","DOIUrl":"https://doi.org/10.1109/OJIA.2024.3476193","url":null,"abstract":"This study investigates the contribution of magnetostriction to vibration and acoustic noise in interior permanent magnet synchronous motors using finite element analysis and experiments on two test machines. The two motors have identical dimensions but different iron core materials. The first motor is made of 6.5% high-silicon steel 10JNEX900 with a negligible magnetostriction (0.3 ppm at 1T), and the second motor is made of amorphous iron 2605SA1 with a significantly high magnetostriction (11.0 ppm at 1T). Using finite element analysis, the electromagnetic forces, equivalent magnetostrictive forces, and resultant vibrations are compared between the two motors. The results reveal a significant counteraction between magnetostrictive vibrations and those caused by electromagnetic forces at the multiples of the sixth vibration harmonic in the amorphous iron motor. This counteraction effect was then verified experimentally. In the experiment, the amorphous iron motor exhibited similar or even lower vibrations at the multiples of the sixth harmonic but significantly higher vibrations at other harmonics. These experimental observations can only be justified by considering magnetostriction. Such experimental evidence, which has not been reported in the existing literature, highlights the importance of accounting for magnetostriction when evaluating vibration and acoustic noise in motors.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"442-454"},"PeriodicalIF":7.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10707194","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sebastian O. Maestri;Gilles Le Godec;Olivier Michels
{"title":"App-Based Tool for Automatic Controller Parameters Assessment for Power Converters in Particle Accelerator Facilities","authors":"Sebastian O. Maestri;Gilles Le Godec;Olivier Michels","doi":"10.1109/OJIA.2024.3460481","DOIUrl":"10.1109/OJIA.2024.3460481","url":null,"abstract":"Regulation coefficients assessment in a particle accelerator power conversion system depends on the topology, the magnet and the desired transient response. The series/parallel combination of a generic power converter (a \u0000<italic>brick</i>\u0000) to develop a larger one (e.g., the SIRIUS power converter family developed at CERN) allows to feed several magnets with different parameters. Then, such standardization allows to develop a control platform and associated regulation system that is common to all the possible configurations. Regardless of the clear flexibility, the commissioning of these converters faces some drawbacks, like the large amount of coefficient sets and the tuning performed for different workers: this leads to certain inconsistency and spread in the transient responses obtained, which is coherent with the inherent subjectivity of the adopted approach. In this work, a methodology for automatic identification of regulator coefficients is developed. From the definition of a desired time transient response, the method uses the response to a step voltage test to evaluate some figures of merit and the particle swarm technique to change the coefficients accordingly to the error obtained. A MATLAB-based app to implement the method in a user-friendly environment is developed. Experimental results based on a \u0000<inline-formula><tex-math>$400operatorname{kW}$</tex-math></inline-formula>\u0000 prototype validate the proposal.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"405-413"},"PeriodicalIF":7.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10680196","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Model Predictive Control in Multilevel Inverters Part II: Renewable Energies and Grid Applications","authors":"Margarita Norambuena;Andres Mora;Cristian Garcia;Jose Rodriguez;Mokhtar Aly;Fernanda Carnielutti;Javier Pereda;Cristian Castillo;Zhenbin Zhang;Venkata Yaramasu;Luca Tarisciotti;Yafei Yin","doi":"10.1109/OJIA.2024.3460668","DOIUrl":"10.1109/OJIA.2024.3460668","url":null,"abstract":"This article presents the use of model predictive control (MPC) in multilevel inverters for some applications, such as, first, wind generation and, second, photovoltaics, showing that the particular restrictions of each of them can be very easily included in the control algorithm, which is an important advantage of this technique. Another application is in modular multilevel cascaded converters, where it is demonstrated that MPC can operate with very few calculations and fixed switching frequency. The second part of this article is dedicated to comparing MPC with linear control and pulsewidth modulation for multilevel inverters. The main comparison criteria are the switching losses, the distortion in the load current, and the number of commutations. The main conclusion is that MPC is a competitive alternative to linear control for application in multilevel inverters.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"414-427"},"PeriodicalIF":7.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10680135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Model Predictive Control in Multilevel Inverters Part I: Basic Strategy and Performance Improvement","authors":"Cristian Garcia;Andres Mora;Margarita Norambuena;Jose Rodriguez;Mokhtar Aly;Fernanda Carnielutti;Javier Pereda;Pablo Acuna;Ricardo Aguilera;Luca Tarisciotti","doi":"10.1109/OJIA.2024.3460669","DOIUrl":"10.1109/OJIA.2024.3460669","url":null,"abstract":"Multilevel inverters (MLIs) have lately become important due to their extended application to electrical transmission and distribution systems. At the same time, the control and modulation of MLIs are especially challenging due to the high number of switching states, many of them redundant in terms of output voltage generation, and their nonlinear characteristics. In order to ease their implementation in real environment, model predictive control (MPC) is often considered, where the main control targets are: 1) to generate a the desired output current and 2) to keep the internal converter capacitor voltages at their reference value. However, a major issue with the implementation of MPC in MLIs is that the number of calculations to be done online increases dramatically with the number of levels, making it almost impossible to apply MPC in some practical cases. For these reasons, one of the main research trend in MPC for MLIs is to provide an algorithm which can reduce the computational burden necessary to operate the control. The article proposes a review of such control techniques. Starting from the basic MPC implementation and using a flying capacitor converter as an example the article review the basic strategies to avoid calculating the weighting factor in the cost function, simplifying the implementation. Also, methods to reduce the number of calculations necessary to implement MPC are shown and applied to cascaded H-bridge converters. These techniques allow to keep an high load current quality while reducing more than 95% in the number of calculations necessary to implement the control. Finally, other operation improvements of MPC are also included, such as fixed switching frequency operation and multistep MPC, reaching an important performance improvement compared to the basic MPC strategy.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"428-441"},"PeriodicalIF":7.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10679905","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}