基于阻抗的自适应控制器实现并网逆变器的自稳定

IF 3.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Joel Filipe Guerreiro;Tiago Davi Curi Busarello;Hildo Guillardi;Igor Alves Maronni;José De A. Olímpio Filho;Helmo K. Morales Paredes;José A. Pomilio
{"title":"基于阻抗的自适应控制器实现并网逆变器的自稳定","authors":"Joel Filipe Guerreiro;Tiago Davi Curi Busarello;Hildo Guillardi;Igor Alves Maronni;José De A. Olímpio Filho;Helmo K. Morales Paredes;José A. Pomilio","doi":"10.1109/OJIA.2025.3579641","DOIUrl":null,"url":null,"abstract":"The grid-connected inverter is responsible for exchanging energy between the electrical grid and energy sources, such as photovoltaic and storage. The interconnection stability of these inverters may be addressed via their impedance characteristics, which comprise the control system and the ac filter. In many cases, the stability deteriorates when these devices are placed in weak grids due to the known effects of phase-locked loop and voltage feedforward. <italic>LCL</i>-type ac filters and resonant-based controllers also pose challenges to the stability of the operation. This work proposes an approach to impedance shaping to stabilize <italic>LCL</i>-type grid-connected inverters in nonideal grids with long feeders and disturbing loads. The method relies on regulating the voltage feedforward gain by disturbing and adapting the system based on the distortion of the output current. The technique enables the self-stabilization of the inverter even when an instability is already triggered and without the need for impedance measurements or processor-intensive algorithms. A frequency sweep verification is performed to measure the converter’s impedance and validate it against the theoretical one. An hardware experiment is implemented to evaluate the stability of the converter for large grid impedance variations using the proposed impedance shaping approach.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"366-381"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11034728","citationCount":"0","resultStr":"{\"title\":\"Self-Stabilization of Grid-Connected Inverters by Means of an Impedance-Based Adaptive Controller\",\"authors\":\"Joel Filipe Guerreiro;Tiago Davi Curi Busarello;Hildo Guillardi;Igor Alves Maronni;José De A. Olímpio Filho;Helmo K. Morales Paredes;José A. Pomilio\",\"doi\":\"10.1109/OJIA.2025.3579641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The grid-connected inverter is responsible for exchanging energy between the electrical grid and energy sources, such as photovoltaic and storage. The interconnection stability of these inverters may be addressed via their impedance characteristics, which comprise the control system and the ac filter. In many cases, the stability deteriorates when these devices are placed in weak grids due to the known effects of phase-locked loop and voltage feedforward. <italic>LCL</i>-type ac filters and resonant-based controllers also pose challenges to the stability of the operation. This work proposes an approach to impedance shaping to stabilize <italic>LCL</i>-type grid-connected inverters in nonideal grids with long feeders and disturbing loads. The method relies on regulating the voltage feedforward gain by disturbing and adapting the system based on the distortion of the output current. The technique enables the self-stabilization of the inverter even when an instability is already triggered and without the need for impedance measurements or processor-intensive algorithms. A frequency sweep verification is performed to measure the converter’s impedance and validate it against the theoretical one. An hardware experiment is implemented to evaluate the stability of the converter for large grid impedance variations using the proposed impedance shaping approach.\",\"PeriodicalId\":100629,\"journal\":{\"name\":\"IEEE Open Journal of Industry Applications\",\"volume\":\"6 \",\"pages\":\"366-381\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11034728\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11034728/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11034728/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

并网逆变器负责电网与光伏、储能等能源之间的能量交换。这些逆变器的互连稳定性可以通过它们的阻抗特性来解决,阻抗特性包括控制系统和交流滤波器。在许多情况下,由于锁相环和电压前馈的已知影响,当这些器件放置在弱电网中时,稳定性会恶化。lc型交流滤波器和基于谐振的控制器也对运行的稳定性提出了挑战。本文提出了一种在具有长馈线和干扰负载的非理想电网中稳定lcl型并网逆变器的阻抗整形方法。该方法基于输出电流的畸变,通过对系统的扰动和自适应来调节电压前馈增益。该技术可以实现逆变器的自稳定,即使不稳定已经被触发,也不需要阻抗测量或处理器密集型算法。进行了扫频验证,测量了转换器的阻抗,并与理论阻抗进行了验证。通过硬件实验,利用所提出的阻抗整形方法来评估变换器在较大栅极阻抗变化情况下的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Stabilization of Grid-Connected Inverters by Means of an Impedance-Based Adaptive Controller
The grid-connected inverter is responsible for exchanging energy between the electrical grid and energy sources, such as photovoltaic and storage. The interconnection stability of these inverters may be addressed via their impedance characteristics, which comprise the control system and the ac filter. In many cases, the stability deteriorates when these devices are placed in weak grids due to the known effects of phase-locked loop and voltage feedforward. LCL-type ac filters and resonant-based controllers also pose challenges to the stability of the operation. This work proposes an approach to impedance shaping to stabilize LCL-type grid-connected inverters in nonideal grids with long feeders and disturbing loads. The method relies on regulating the voltage feedforward gain by disturbing and adapting the system based on the distortion of the output current. The technique enables the self-stabilization of the inverter even when an instability is already triggered and without the need for impedance measurements or processor-intensive algorithms. A frequency sweep verification is performed to measure the converter’s impedance and validate it against the theoretical one. An hardware experiment is implemented to evaluate the stability of the converter for large grid impedance variations using the proposed impedance shaping approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信