Torque Ripple Minimization in Switched Reluctance Motors With Acoustic Noise Mitigation by Current Waveform Shaping

IF 3.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Fares S. El-Faouri;Yifei Cai;Shou Qiu;Chenyang Lyu;Jacob Bayless;Kyohei Kiyota;Wejdan Abu Elhaija;Akira Chiba
{"title":"Torque Ripple Minimization in Switched Reluctance Motors With Acoustic Noise Mitigation by Current Waveform Shaping","authors":"Fares S. El-Faouri;Yifei Cai;Shou Qiu;Chenyang Lyu;Jacob Bayless;Kyohei Kiyota;Wejdan Abu Elhaija;Akira Chiba","doi":"10.1109/OJIA.2025.3579150","DOIUrl":null,"url":null,"abstract":"This article presents a novel method for torque ripple reduction in switched reluctance motors (SRMs). The proposed method relies on current waveform shaping. The shaped current profile is an adjusted version of a current waveform in the literature that reduces the acoustic noise of SRMs. The resulting proposed current flattens the torque waveform in addition to a significant reduction in acoustic noise. The proposed method is compared with several conventional square currents, as well as with the currents that are dedicated to acoustic noise reduction from the literature. The primary contributions of this article are the simultaneous minimization of torque ripple and acoustic noise through current waveform shaping, as well as the application of the current-waveform refinement method specifically for torque ripple reduction. Experiments and finite element analysis were implemented to achieve the comparisons in terms of current, torque, radial force, stator vibration, and sound pressure level.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"403-414"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11032126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11032126/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a novel method for torque ripple reduction in switched reluctance motors (SRMs). The proposed method relies on current waveform shaping. The shaped current profile is an adjusted version of a current waveform in the literature that reduces the acoustic noise of SRMs. The resulting proposed current flattens the torque waveform in addition to a significant reduction in acoustic noise. The proposed method is compared with several conventional square currents, as well as with the currents that are dedicated to acoustic noise reduction from the literature. The primary contributions of this article are the simultaneous minimization of torque ripple and acoustic noise through current waveform shaping, as well as the application of the current-waveform refinement method specifically for torque ripple reduction. Experiments and finite element analysis were implemented to achieve the comparisons in terms of current, torque, radial force, stator vibration, and sound pressure level.
电流波形整形抑制噪声的开关磁阻电机转矩纹波最小化
本文提出了一种抑制开关磁阻电机转矩脉动的新方法。该方法依赖于电流波形整形。成形电流轮廓是文献中降低srm噪声的电流波形的调整版本。由此提出的电流除了显著降低噪声外,还使扭矩波形变平。将该方法与几种传统的方形电流以及文献中专门用于降噪的电流进行了比较。本文的主要贡献是通过电流波形整形同时最小化转矩脉动和噪声,以及应用专门用于减少转矩脉动的电流波形细化方法。通过实验和有限元分析,实现了电流、转矩、径向力、定子振动和声压级的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信