The Virtual Power Feedback: Enhancing the Transient Stability of Virtual Synchronous Generators Under Current Limitation

IF 3.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Alessia Camboni;Vincenzo Mallemaci;Fabio Mandrile;Radu Bojoi
{"title":"The Virtual Power Feedback: Enhancing the Transient Stability of Virtual Synchronous Generators Under Current Limitation","authors":"Alessia Camboni;Vincenzo Mallemaci;Fabio Mandrile;Radu Bojoi","doi":"10.1109/OJIA.2025.3586412","DOIUrl":null,"url":null,"abstract":"The virtual synchronous generator (VSG) concept is a well-established control solution that facilitates the integration of power electronics-interfaced renewable sources into the electric grid. The VSG algorithm enables power converters to support the grid in case of voltage dips by injecting a large short-circuit current. However, a current limitation strategy must be implemented to address the hardware limitation of power converters. As demonstrated in the literature, the current constraint affects the VSG’s dynamics by limiting the output power, thus causing a substantial acceleration of the virtual rotor and potentially leading to a loss of synchronism. Several available solutions utilize the measured actual active power as feedback, thereby modifying the VSG with complex control algorithms. On the other hand, this article proposes a different approach, highlighting the benefits of using the virtual power instead of the measured power feedback for the most adopted limitation strategies available in the literature. This paradigm shift leads to a significant improvement in stability without requiring fault detection capability or switching the control structure, as demonstrated both theoretically and experimentally in this article.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"490-505"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11072272","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11072272/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The virtual synchronous generator (VSG) concept is a well-established control solution that facilitates the integration of power electronics-interfaced renewable sources into the electric grid. The VSG algorithm enables power converters to support the grid in case of voltage dips by injecting a large short-circuit current. However, a current limitation strategy must be implemented to address the hardware limitation of power converters. As demonstrated in the literature, the current constraint affects the VSG’s dynamics by limiting the output power, thus causing a substantial acceleration of the virtual rotor and potentially leading to a loss of synchronism. Several available solutions utilize the measured actual active power as feedback, thereby modifying the VSG with complex control algorithms. On the other hand, this article proposes a different approach, highlighting the benefits of using the virtual power instead of the measured power feedback for the most adopted limitation strategies available in the literature. This paradigm shift leads to a significant improvement in stability without requiring fault detection capability or switching the control structure, as demonstrated both theoretically and experimentally in this article.
虚功率反馈:提高虚同步发电机在电流限制下的暂态稳定性
虚拟同步发电机(VSG)概念是一种完善的控制解决方案,有助于将电力电子接口的可再生能源整合到电网中。VSG算法通过注入大的短路电流,使电源变换器在电压下降的情况下支持电网。然而,必须实施电流限制策略来解决电源转换器的硬件限制。如文献所示,电流约束通过限制输出功率来影响VSG的动力学,从而导致虚拟转子的大幅加速度,并可能导致同步损失。几种可用的解决方案利用测量的实际有功功率作为反馈,从而用复杂的控制算法修改VSG。另一方面,本文提出了一种不同的方法,强调了在文献中最常用的限制策略中使用虚拟功率而不是测量功率反馈的好处。正如本文在理论和实验中所证明的那样,这种范式转换可以在不需要故障检测能力或切换控制结构的情况下显著提高稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信