A Systematic Method for the Calibration of FEA Model of Synchronous Reluctance Machines Considering Manufacturing Effects

IF 3.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Andrea Credo;Paolo Pescetto
{"title":"A Systematic Method for the Calibration of FEA Model of Synchronous Reluctance Machines Considering Manufacturing Effects","authors":"Andrea Credo;Paolo Pescetto","doi":"10.1109/OJIA.2025.3586810","DOIUrl":null,"url":null,"abstract":"The recent advances in computational power and motor design software, supported by finite elements analysis (FEA), permit accurate prediction of the losses and electromagnetic performance of the machine at the design stage. Anyway, the simulation accuracy strictly depends on the real motor geometry and material properties, which are affected by the manufacturing process. This article offers a systematic method for accurately calibrating the electromagnetic FEA models, permitting to consider the production process within the motor design stage. A synchronous reluctance motor prototype is designed, manufactured, and experimentally characterized, and the measured flux and torque characteristics are exploited for ex-post calibrating the FEA model of the machine. This approach led to a reduction in torque estimation error from 18% to 4%, and an improvement of the flux maps evaluation, thus enhancing and validating the design procedure and permitting further optimization steps of machines with similar geometry and dimensions. The effects are particularly evident in the proposed motor due to the reduced size of the rotor flux barriers, stator teeth, and yoke. The mechanical tolerances are analyzed through a Monte Carlo analysis covering different areas of the machine. Then, the effects of uncertain airgap length and iron degradation due to the manufacturing process are considered, determining an equivalent degraded BH curve.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"539-550"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11072356","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11072356/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The recent advances in computational power and motor design software, supported by finite elements analysis (FEA), permit accurate prediction of the losses and electromagnetic performance of the machine at the design stage. Anyway, the simulation accuracy strictly depends on the real motor geometry and material properties, which are affected by the manufacturing process. This article offers a systematic method for accurately calibrating the electromagnetic FEA models, permitting to consider the production process within the motor design stage. A synchronous reluctance motor prototype is designed, manufactured, and experimentally characterized, and the measured flux and torque characteristics are exploited for ex-post calibrating the FEA model of the machine. This approach led to a reduction in torque estimation error from 18% to 4%, and an improvement of the flux maps evaluation, thus enhancing and validating the design procedure and permitting further optimization steps of machines with similar geometry and dimensions. The effects are particularly evident in the proposed motor due to the reduced size of the rotor flux barriers, stator teeth, and yoke. The mechanical tolerances are analyzed through a Monte Carlo analysis covering different areas of the machine. Then, the effects of uncertain airgap length and iron degradation due to the manufacturing process are considered, determining an equivalent degraded BH curve.
一种考虑制造效应的同步磁阻电机有限元模型标定方法
在有限元分析(FEA)的支持下,计算能力和电机设计软件的最新进展允许在设计阶段准确预测机器的损耗和电磁性能。无论如何,仿真精度严格依赖于实际电机的几何形状和材料特性,而这些又受制造工艺的影响。本文提供了一种系统的方法来精确校准电磁有限元模型,允许在电机设计阶段考虑生产过程。设计、制造了同步磁阻电机样机,并进行了实验表征,利用实测磁通和转矩特性对电机的有限元模型进行了事后校正。该方法将扭矩估计误差从18%降低到4%,并改进了磁通图评估,从而增强和验证了设计过程,并允许对具有相似几何形状和尺寸的机器进行进一步优化。由于转子磁通屏障、定子齿和轭的尺寸减小,这种影响在提议的电机中尤为明显。机械公差是通过蒙特卡罗分析涵盖机器的不同区域进行分析。然后,考虑了不确定气隙长度和制造工艺导致的铁降解的影响,确定了等效的降解BH曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信