同步发电机数据驱动故障诊断方法

IF 3.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zahra Masoumi;Bijan Moaveni
{"title":"同步发电机数据驱动故障诊断方法","authors":"Zahra Masoumi;Bijan Moaveni","doi":"10.1109/OJIA.2025.3591740","DOIUrl":null,"url":null,"abstract":"This article presents a data-driven approach for diagnosing interturn short-circuit (ITSC) faults in the field winding of synchronous generators (SGs). A notable advantage of this method is its independence from the load’s linearity or nonlinearity. The method’s foundation is derived from analyzing the impact of ITSC faults on the state-space model of an SG, utilizing the SG equations in the <italic>dq</i> rotor reference frame. Based on the state-space model, subspace identification and input–output data, including voltages and currents, are used to estimate the eigenvalues of the state matrix. The detection, isolation, and estimation of faults are achieved through the estimated eigenvalues, without relying on the model. Simulation and experimental results validate the effectiveness of this data-driven fault diagnosis methodology.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"593-602"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11121658","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Fault Diagnosis Approach for Synchronous Generators\",\"authors\":\"Zahra Masoumi;Bijan Moaveni\",\"doi\":\"10.1109/OJIA.2025.3591740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a data-driven approach for diagnosing interturn short-circuit (ITSC) faults in the field winding of synchronous generators (SGs). A notable advantage of this method is its independence from the load’s linearity or nonlinearity. The method’s foundation is derived from analyzing the impact of ITSC faults on the state-space model of an SG, utilizing the SG equations in the <italic>dq</i> rotor reference frame. Based on the state-space model, subspace identification and input–output data, including voltages and currents, are used to estimate the eigenvalues of the state matrix. The detection, isolation, and estimation of faults are achieved through the estimated eigenvalues, without relying on the model. Simulation and experimental results validate the effectiveness of this data-driven fault diagnosis methodology.\",\"PeriodicalId\":100629,\"journal\":{\"name\":\"IEEE Open Journal of Industry Applications\",\"volume\":\"6 \",\"pages\":\"593-602\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11121658\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11121658/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11121658/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种数据驱动的同步发电机励磁绕组匝间短路故障诊断方法。该方法的一个显著优点是不受载荷线性或非线性的影响。利用dq转子参照系中的SG方程,分析了ITSC故障对SG状态空间模型的影响,得出了该方法的基础。基于状态空间模型,利用子空间识别和输入输出数据(包括电压和电流)估计状态矩阵的特征值。通过估计的特征值来实现故障的检测、隔离和估计,而不依赖于模型。仿真和实验结果验证了该数据驱动故障诊断方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Fault Diagnosis Approach for Synchronous Generators
This article presents a data-driven approach for diagnosing interturn short-circuit (ITSC) faults in the field winding of synchronous generators (SGs). A notable advantage of this method is its independence from the load’s linearity or nonlinearity. The method’s foundation is derived from analyzing the impact of ITSC faults on the state-space model of an SG, utilizing the SG equations in the dq rotor reference frame. Based on the state-space model, subspace identification and input–output data, including voltages and currents, are used to estimate the eigenvalues of the state matrix. The detection, isolation, and estimation of faults are achieved through the estimated eigenvalues, without relying on the model. Simulation and experimental results validate the effectiveness of this data-driven fault diagnosis methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信