Examples and Counterexamples最新文献

筛选
英文 中文
On the non-existence of a discrete power series distribution with a constant coefficient of variation 关于常变系数离散幂级数分布的不存在性
Examples and Counterexamples Pub Date : 2023-03-28 DOI: 10.1016/j.exco.2023.100104
Rahul Bhattacharya , Taranga Mukherjee
{"title":"On the non-existence of a discrete power series distribution with a constant coefficient of variation","authors":"Rahul Bhattacharya ,&nbsp;Taranga Mukherjee","doi":"10.1016/j.exco.2023.100104","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100104","url":null,"abstract":"<div><p>Non-existence of distributions with constant coefficient of variation(CV) is investigated within the discrete Power Series and Modified Power Series families of distributions. The development is used to revisit and comment on the problem of existence of a better but biased estimator.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100104"},"PeriodicalIF":0.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partial groups, examples and applications 分部群、实例和应用
Examples and Counterexamples Pub Date : 2023-03-28 DOI: 10.1016/j.exco.2023.100103
Solomon Jekel
{"title":"Partial groups, examples and applications","authors":"Solomon Jekel","doi":"10.1016/j.exco.2023.100103","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100103","url":null,"abstract":"<div><p>Partial Group structures occur naturally in several topological and geometrical contexts. We formulate the basic definitions, and present some results and examples. The objective is to provide a step toward the development of a theory of partial groups, and to motivate the search for further applications.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100103"},"PeriodicalIF":0.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Generalized commutative Jacobsthal quaternions and some matrices 广义交换Jacobsthal四元数和一些矩阵
Examples and Counterexamples Pub Date : 2023-03-25 DOI: 10.1016/j.exco.2023.100102
Dorota Bród, Anetta Szynal-Liana
{"title":"Generalized commutative Jacobsthal quaternions and some matrices","authors":"Dorota Bród,&nbsp;Anetta Szynal-Liana","doi":"10.1016/j.exco.2023.100102","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100102","url":null,"abstract":"<div><p>In this paper, some examples of matrix generators for generalized commutative Jacobsthal quaternions were given. The generating matrices are useful tools for the number sequences satisfying a recurrence relation. They can be used for an algebraic representation and for obtaining some identities.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100102"},"PeriodicalIF":0.0,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50180783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rainbow Cascades and permutation-labeled hypercube tilings 彩虹级联和置换标记超立方体
Examples and Counterexamples Pub Date : 2023-01-25 DOI: 10.1016/j.exco.2023.100099
Lon Mitchell
{"title":"Rainbow Cascades and permutation-labeled hypercube tilings","authors":"Lon Mitchell","doi":"10.1016/j.exco.2023.100099","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100099","url":null,"abstract":"<div><p>We explore a new view of the Rainbow Cascades Conjecture using permutations. Infinitely many new 6-satisfactory colorings are found, and evidence is provided that suggests only finitely many 7-satisfactory colorings exist.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100099"},"PeriodicalIF":0.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An upper bound for difference of energies of a graph and its complement 图及其补码能量差的上界
Examples and Counterexamples Pub Date : 2023-01-21 DOI: 10.1016/j.exco.2023.100100
Harishchandra S. Ramane , B. Parvathalu , K. Ashoka
{"title":"An upper bound for difference of energies of a graph and its complement","authors":"Harishchandra S. Ramane ,&nbsp;B. Parvathalu ,&nbsp;K. Ashoka","doi":"10.1016/j.exco.2023.100100","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100100","url":null,"abstract":"<div><p>The <span><math><mi>A</mi></math></span>-energy of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is defined as sum of the absolute values of eigenvalues of adjacency matrix of <span><math><mi>G</mi></math></span>. Nikiforov in Nikiforov (2016) proved that <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msub><mrow><mover><mrow><mi>μ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> for any graph <span><math><mi>G</mi></math></span> and posed a problem to find best possible upper bound for <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span>, where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mover><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>¯</mo></mover></math></span> are the largest adjacency eigenvalues of <span><math><mi>G</mi></math></span> and its complement <span><math><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover></math></span> respectively. We attempt to provide an answer by giving an improved upper bound on a class of graphs where regular graphs become particular case. As a consequence, it is proved that there is no strongly regular graph with negative eigenvalues greater than <span><math><mrow><mo>−</mo><mn>1</mn></mrow></math></span>. The obtained results also improves some of the other existing results.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100100"},"PeriodicalIF":0.0,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial - Recent Fails and Findings of Numerical Methods in Mechanics 编辑-力学数值方法的最新失败与发现
Examples and Counterexamples Pub Date : 2022-12-31 DOI: 10.1016/j.exco.2022.100098
Fleurianne Bertrand, Katrin Mang
{"title":"Editorial - Recent Fails and Findings of Numerical Methods in Mechanics","authors":"Fleurianne Bertrand,&nbsp;Katrin Mang","doi":"10.1016/j.exco.2022.100098","DOIUrl":"https://doi.org/10.1016/j.exco.2022.100098","url":null,"abstract":"","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100098"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All minimal [9,4]2-codes are hyperbolic quadrics 所有极小[9,4]2-码都是双曲二次曲面
Examples and Counterexamples Pub Date : 2022-12-22 DOI: 10.1016/j.exco.2022.100097
Valentino Smaldore
{"title":"All minimal [9,4]2-codes are hyperbolic quadrics","authors":"Valentino Smaldore","doi":"10.1016/j.exco.2022.100097","DOIUrl":"https://doi.org/10.1016/j.exco.2022.100097","url":null,"abstract":"<div><p>Minimal codes are being intensively studied in last years. <span><math><msub><mrow><mrow><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>]</mo></mrow></mrow><mrow><mi>q</mi></mrow></msub></math></span>-minimal linear codes are in bijection with strong blocking sets of size <span><math><mi>n</mi></math></span> in <span><math><mrow><mi>P</mi><mi>G</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and a lower bound for the size of strong blocking sets is given by <span><math><mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>≤</mo><mi>n</mi></mrow></math></span>. In this note we show that all strong blocking sets of length 9 in <span><math><mrow><mi>P</mi><mi>G</mi><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> are the hyperbolic quadrics <span><math><mrow><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100097"},"PeriodicalIF":0.0,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Families of finite sets in which no set is covered by the union of the others 有限集族,其中没有集被其他集的并集覆盖
Examples and Counterexamples Pub Date : 2022-12-10 DOI: 10.1016/j.exco.2022.100095
Guillermo Alesandroni
{"title":"Families of finite sets in which no set is covered by the union of the others","authors":"Guillermo Alesandroni","doi":"10.1016/j.exco.2022.100095","DOIUrl":"https://doi.org/10.1016/j.exco.2022.100095","url":null,"abstract":"<div><p>Let <span><math><mi>ℱ</mi></math></span> be a finite nonempty family of finite nonempty sets. We prove the following: (1) <span><math><mi>ℱ</mi></math></span> satisfies the condition of the title if and only if for every pair of distinct subfamilies <span><math><mrow><mo>{</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></mrow></math></span>, <span><math><mrow><mo>{</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>}</mo></mrow></math></span> of <span><math><mi>ℱ</mi></math></span>, <span><math><mrow><munderover><mrow><mo>⋃</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></munderover><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><munderover><mrow><mo>⋃</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></munderover><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span>. (2) If <span><math><mi>ℱ</mi></math></span> satisfies the condition of the title, then the number of subsets of <span><math><mrow><munder><mrow><mo>⋃</mo></mrow><mrow><mi>A</mi><mo>∈</mo><mi>ℱ</mi></mrow></munder><mi>A</mi></mrow></math></span> containing at least one set of <span><math><mi>ℱ</mi></math></span> is odd. We give two applications of these results, one to number theory and one to commutative algebra.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100095"},"PeriodicalIF":0.0,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Augmentation of magnetohydrodynamic nanofluid flow through a permeable stretching sheet employing Machine learning algorithm 利用机器学习算法增强磁流体力学纳米流体通过可渗透拉伸片的流动
Examples and Counterexamples Pub Date : 2022-12-09 DOI: 10.1016/j.exco.2022.100093
P. Priyadharshini, M. Vanitha Archana
{"title":"Augmentation of magnetohydrodynamic nanofluid flow through a permeable stretching sheet employing Machine learning algorithm","authors":"P. Priyadharshini,&nbsp;M. Vanitha Archana","doi":"10.1016/j.exco.2022.100093","DOIUrl":"https://doi.org/10.1016/j.exco.2022.100093","url":null,"abstract":"<div><p>An incompressible MHD nanofluid boundary layer flow over a vertical stretching permeable surface employing Buongiorno’s design investigated by considering the convective states. The Brownian motion and thermophoresis effects are used to implement the nanofluid model. Operating the similarity transmutations, to transform the governing partial differential equations into ordinary differential equations consisting of the momentum, energy, and concentration fields and later worked by using a program written together with the stiffness shifting in Wolfram Language. The consequences of various physical parameters on the velocity, temperature, and concentration fields are analyzed, such as magnetic parameter <span><math><mi>M</mi></math></span>, Brownian motion parameter <span><math><mrow><mi>N</mi><mi>b</mi></mrow></math></span>, thermophoresis parameter <span><math><mrow><mi>N</mi><mi>t</mi></mrow></math></span>, Lewis number <span><math><mrow><mi>L</mi><mi>e</mi></mrow></math></span>, temperature Biot number <span><math><mrow><mi>B</mi><msub><mrow><mi>i</mi></mrow><mrow><mi>θ</mi></mrow></msub></mrow></math></span>, concentration Biot number <span><math><mrow><mi>B</mi><msub><mrow><mi>i</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></mrow></math></span>, and suction parameter <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span>. Furthermore, the Skin friction coefficient, local Nusselt, and local Sherwood numbers concerning magnetic parameter for various values of physical parameters (i.e. <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span>, <span><math><mrow><mi>N</mi><mi>b</mi></mrow></math></span>) are obtained graphically, then the outcome is validated with other recent works. Finally, introduced a new environment to employ machine learning by performing the sensitivity analysis based on the iterative method for predicting the Skin friction coefficient, reduced Nusselt number, and Sherwood number with respect to magnetic parameter for suction parameter and Brownian motion parameter. Machine learning algorithms provide a strong and quick data processing structure to enhance the actual research procedures and industrial application of fluid mechanics. These techniques have been upgraded and organized for fluid flow characteristics. The present optimization process has the potential for a new perspective on the metallurgical process, heat exchangers in electronics, and some medicinal applications.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100093"},"PeriodicalIF":0.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Algebraic constructions of group divisible designs 群可分设计的代数构造
Examples and Counterexamples Pub Date : 2022-12-07 DOI: 10.1016/j.exco.2022.100094
Shyam Saurabh , Kishore Sinha
{"title":"Algebraic constructions of group divisible designs","authors":"Shyam Saurabh ,&nbsp;Kishore Sinha","doi":"10.1016/j.exco.2022.100094","DOIUrl":"https://doi.org/10.1016/j.exco.2022.100094","url":null,"abstract":"<div><p>Some series of Group divisible designs using generalized Bhaskar Rao designs over Dihedral, Symmetric and Alternating groups are obtained.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100094"},"PeriodicalIF":0.0,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信