有限集族,其中没有集被其他集的并集覆盖

Guillermo Alesandroni
{"title":"有限集族,其中没有集被其他集的并集覆盖","authors":"Guillermo Alesandroni","doi":"10.1016/j.exco.2022.100095","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>ℱ</mi></math></span> be a finite nonempty family of finite nonempty sets. We prove the following: (1) <span><math><mi>ℱ</mi></math></span> satisfies the condition of the title if and only if for every pair of distinct subfamilies <span><math><mrow><mo>{</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></mrow></math></span>, <span><math><mrow><mo>{</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>}</mo></mrow></math></span> of <span><math><mi>ℱ</mi></math></span>, <span><math><mrow><munderover><mrow><mo>⋃</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></munderover><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><munderover><mrow><mo>⋃</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></munderover><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span>. (2) If <span><math><mi>ℱ</mi></math></span> satisfies the condition of the title, then the number of subsets of <span><math><mrow><munder><mrow><mo>⋃</mo></mrow><mrow><mi>A</mi><mo>∈</mo><mi>ℱ</mi></mrow></munder><mi>A</mi></mrow></math></span> containing at least one set of <span><math><mi>ℱ</mi></math></span> is odd. We give two applications of these results, one to number theory and one to commutative algebra.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Families of finite sets in which no set is covered by the union of the others\",\"authors\":\"Guillermo Alesandroni\",\"doi\":\"10.1016/j.exco.2022.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>ℱ</mi></math></span> be a finite nonempty family of finite nonempty sets. We prove the following: (1) <span><math><mi>ℱ</mi></math></span> satisfies the condition of the title if and only if for every pair of distinct subfamilies <span><math><mrow><mo>{</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></mrow></math></span>, <span><math><mrow><mo>{</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>}</mo></mrow></math></span> of <span><math><mi>ℱ</mi></math></span>, <span><math><mrow><munderover><mrow><mo>⋃</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></munderover><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><munderover><mrow><mo>⋃</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></munderover><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span>. (2) If <span><math><mi>ℱ</mi></math></span> satisfies the condition of the title, then the number of subsets of <span><math><mrow><munder><mrow><mo>⋃</mo></mrow><mrow><mi>A</mi><mo>∈</mo><mi>ℱ</mi></mrow></munder><mi>A</mi></mrow></math></span> containing at least one set of <span><math><mi>ℱ</mi></math></span> is odd. We give two applications of these results, one to number theory and one to commutative algebra.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"3 \",\"pages\":\"Article 100095\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X22000283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X22000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

允许ℱ 是有限非空集的有限非空族。我们证明如下:(1)ℱ 满足标题的条件当且仅当对于的每一对不同的亚家族{A1,…,Ar},{B1,…,Bs}ℱ, ⋃i=1rAi≠i=1sBi。(2) 如果ℱ 满足标题的条件,则⋃A∈ℱ包含至少一组ℱ 很奇怪。我们给出了这些结果的两个应用,一个应用于数论,一个用于交换代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Families of finite sets in which no set is covered by the union of the others

Let be a finite nonempty family of finite nonempty sets. We prove the following: (1) satisfies the condition of the title if and only if for every pair of distinct subfamilies {A1,,Ar}, {B1,,Bs} of , i=1rAii=1sBi. (2) If satisfies the condition of the title, then the number of subsets of AA containing at least one set of is odd. We give two applications of these results, one to number theory and one to commutative algebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信