{"title":"All minimal [9,4]2-codes are hyperbolic quadrics","authors":"Valentino Smaldore","doi":"10.1016/j.exco.2022.100097","DOIUrl":null,"url":null,"abstract":"<div><p>Minimal codes are being intensively studied in last years. <span><math><msub><mrow><mrow><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>]</mo></mrow></mrow><mrow><mi>q</mi></mrow></msub></math></span>-minimal linear codes are in bijection with strong blocking sets of size <span><math><mi>n</mi></math></span> in <span><math><mrow><mi>P</mi><mi>G</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and a lower bound for the size of strong blocking sets is given by <span><math><mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>≤</mo><mi>n</mi></mrow></math></span>. In this note we show that all strong blocking sets of length 9 in <span><math><mrow><mi>P</mi><mi>G</mi><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> are the hyperbolic quadrics <span><math><mrow><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100097"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X22000301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Minimal codes are being intensively studied in last years. -minimal linear codes are in bijection with strong blocking sets of size in and a lower bound for the size of strong blocking sets is given by . In this note we show that all strong blocking sets of length 9 in are the hyperbolic quadrics .