All minimal [9,4]2-codes are hyperbolic quadrics

Valentino Smaldore
{"title":"All minimal [9,4]2-codes are hyperbolic quadrics","authors":"Valentino Smaldore","doi":"10.1016/j.exco.2022.100097","DOIUrl":null,"url":null,"abstract":"<div><p>Minimal codes are being intensively studied in last years. <span><math><msub><mrow><mrow><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>]</mo></mrow></mrow><mrow><mi>q</mi></mrow></msub></math></span>-minimal linear codes are in bijection with strong blocking sets of size <span><math><mi>n</mi></math></span> in <span><math><mrow><mi>P</mi><mi>G</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and a lower bound for the size of strong blocking sets is given by <span><math><mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>≤</mo><mi>n</mi></mrow></math></span>. In this note we show that all strong blocking sets of length 9 in <span><math><mrow><mi>P</mi><mi>G</mi><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> are the hyperbolic quadrics <span><math><mrow><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100097"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X22000301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Minimal codes are being intensively studied in last years. [n,k]q-minimal linear codes are in bijection with strong blocking sets of size n in PG(k1,q) and a lower bound for the size of strong blocking sets is given by (k1)(q+1)n. In this note we show that all strong blocking sets of length 9 in PG(3,2) are the hyperbolic quadrics Q+(3,2).

所有极小[9,4]2-码都是双曲二次曲面
在过去的几年里,人们对最小编码进行了深入的研究。在PG(k−1,q)中,[n,k]q-极小线性码与大小为n的强阻塞集是双射的,并且强阻塞集大小的下界由(k−l)(q+1)≤n给出。在这个注记中,我们证明了PG(3,2)中所有长度为9的强阻塞集都是双曲二次曲面Q+(3,2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信