Harishchandra S. Ramane , B. Parvathalu , K. Ashoka
{"title":"图及其补码能量差的上界","authors":"Harishchandra S. Ramane , B. Parvathalu , K. Ashoka","doi":"10.1016/j.exco.2023.100100","DOIUrl":null,"url":null,"abstract":"<div><p>The <span><math><mi>A</mi></math></span>-energy of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is defined as sum of the absolute values of eigenvalues of adjacency matrix of <span><math><mi>G</mi></math></span>. Nikiforov in Nikiforov (2016) proved that <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msub><mrow><mover><mrow><mi>μ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> for any graph <span><math><mi>G</mi></math></span> and posed a problem to find best possible upper bound for <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span>, where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mover><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>¯</mo></mover></math></span> are the largest adjacency eigenvalues of <span><math><mi>G</mi></math></span> and its complement <span><math><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover></math></span> respectively. We attempt to provide an answer by giving an improved upper bound on a class of graphs where regular graphs become particular case. As a consequence, it is proved that there is no strongly regular graph with negative eigenvalues greater than <span><math><mrow><mo>−</mo><mn>1</mn></mrow></math></span>. The obtained results also improves some of the other existing results.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100100"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An upper bound for difference of energies of a graph and its complement\",\"authors\":\"Harishchandra S. Ramane , B. Parvathalu , K. Ashoka\",\"doi\":\"10.1016/j.exco.2023.100100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <span><math><mi>A</mi></math></span>-energy of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is defined as sum of the absolute values of eigenvalues of adjacency matrix of <span><math><mi>G</mi></math></span>. Nikiforov in Nikiforov (2016) proved that <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msub><mrow><mover><mrow><mi>μ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> for any graph <span><math><mi>G</mi></math></span> and posed a problem to find best possible upper bound for <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span>, where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mover><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>¯</mo></mover></math></span> are the largest adjacency eigenvalues of <span><math><mi>G</mi></math></span> and its complement <span><math><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover></math></span> respectively. We attempt to provide an answer by giving an improved upper bound on a class of graphs where regular graphs become particular case. As a consequence, it is proved that there is no strongly regular graph with negative eigenvalues greater than <span><math><mrow><mo>−</mo><mn>1</mn></mrow></math></span>. The obtained results also improves some of the other existing results.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"3 \",\"pages\":\"Article 100100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X23000022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An upper bound for difference of energies of a graph and its complement
The -energy of a graph , denoted by , is defined as sum of the absolute values of eigenvalues of adjacency matrix of . Nikiforov in Nikiforov (2016) proved that and for any graph and posed a problem to find best possible upper bound for , where and are the largest adjacency eigenvalues of and its complement respectively. We attempt to provide an answer by giving an improved upper bound on a class of graphs where regular graphs become particular case. As a consequence, it is proved that there is no strongly regular graph with negative eigenvalues greater than . The obtained results also improves some of the other existing results.