{"title":"Families of finite sets in which no set is covered by the union of the others","authors":"Guillermo Alesandroni","doi":"10.1016/j.exco.2022.100095","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>ℱ</mi></math></span> be a finite nonempty family of finite nonempty sets. We prove the following: (1) <span><math><mi>ℱ</mi></math></span> satisfies the condition of the title if and only if for every pair of distinct subfamilies <span><math><mrow><mo>{</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></mrow></math></span>, <span><math><mrow><mo>{</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>}</mo></mrow></math></span> of <span><math><mi>ℱ</mi></math></span>, <span><math><mrow><munderover><mrow><mo>⋃</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></munderover><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><munderover><mrow><mo>⋃</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></munderover><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span>. (2) If <span><math><mi>ℱ</mi></math></span> satisfies the condition of the title, then the number of subsets of <span><math><mrow><munder><mrow><mo>⋃</mo></mrow><mrow><mi>A</mi><mo>∈</mo><mi>ℱ</mi></mrow></munder><mi>A</mi></mrow></math></span> containing at least one set of <span><math><mi>ℱ</mi></math></span> is odd. We give two applications of these results, one to number theory and one to commutative algebra.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X22000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Let be a finite nonempty family of finite nonempty sets. We prove the following: (1) satisfies the condition of the title if and only if for every pair of distinct subfamilies , of , . (2) If satisfies the condition of the title, then the number of subsets of containing at least one set of is odd. We give two applications of these results, one to number theory and one to commutative algebra.