An upper bound for difference of energies of a graph and its complement

Harishchandra S. Ramane , B. Parvathalu , K. Ashoka
{"title":"An upper bound for difference of energies of a graph and its complement","authors":"Harishchandra S. Ramane ,&nbsp;B. Parvathalu ,&nbsp;K. Ashoka","doi":"10.1016/j.exco.2023.100100","DOIUrl":null,"url":null,"abstract":"<div><p>The <span><math><mi>A</mi></math></span>-energy of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is defined as sum of the absolute values of eigenvalues of adjacency matrix of <span><math><mi>G</mi></math></span>. Nikiforov in Nikiforov (2016) proved that <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msub><mrow><mover><mrow><mi>μ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> for any graph <span><math><mi>G</mi></math></span> and posed a problem to find best possible upper bound for <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span>, where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mover><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>¯</mo></mover></math></span> are the largest adjacency eigenvalues of <span><math><mi>G</mi></math></span> and its complement <span><math><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover></math></span> respectively. We attempt to provide an answer by giving an improved upper bound on a class of graphs where regular graphs become particular case. As a consequence, it is proved that there is no strongly regular graph with negative eigenvalues greater than <span><math><mrow><mo>−</mo><mn>1</mn></mrow></math></span>. The obtained results also improves some of the other existing results.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100100"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The A-energy of a graph G, denoted by EA(G), is defined as sum of the absolute values of eigenvalues of adjacency matrix of G. Nikiforov in Nikiforov (2016) proved that EA(G¯)EA(G)2μ¯1 and EA(G)EA(G¯)2μ1 for any graph G and posed a problem to find best possible upper bound for EA(G)EA(G¯), where μ1 and μ1¯ are the largest adjacency eigenvalues of G and its complement G¯ respectively. We attempt to provide an answer by giving an improved upper bound on a class of graphs where regular graphs become particular case. As a consequence, it is proved that there is no strongly regular graph with negative eigenvalues greater than 1. The obtained results also improves some of the other existing results.

图及其补码能量差的上界
图G的A能量,表示为EA(G),定义为G.Nikiforov(2016)中邻接矩阵的特征值的绝对值之和。证明了任何图G的EA(G’)−EA(G)≤2μ1和EA(G’)−EA(G)≤2µ1,并提出了一个问题,即寻找EA(G”−EA(G)的最佳可能上界,其中μ1和μ1分别是G及其补码G的最大邻接特征值。我们试图通过给出一类图的改进上界来提供答案,其中正则图成为特例。因此,证明了不存在负特征值大于−1的强正则图。所获得的结果还改进了其他一些现有结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信