eScience最新文献

筛选
英文 中文
Cation-inspired polyhedral distortion boosting moisture/electrolyte stability of iron sulfate cathode for durable high-temperature sodium-ion storage
IF 42.9
eScience Pub Date : 2025-03-01 DOI: 10.1016/j.esci.2024.100313
Longfei Wen , Jiyu Zhang , Jian Zhang , Lingfei Zhao , Xin Wang , Sen Wang , Siyu Ma , Wenbin Li , Jun Luo , Junmin Ge , Weihua Chen
{"title":"Cation-inspired polyhedral distortion boosting moisture/electrolyte stability of iron sulfate cathode for durable high-temperature sodium-ion storage","authors":"Longfei Wen ,&nbsp;Jiyu Zhang ,&nbsp;Jian Zhang ,&nbsp;Lingfei Zhao ,&nbsp;Xin Wang ,&nbsp;Sen Wang ,&nbsp;Siyu Ma ,&nbsp;Wenbin Li ,&nbsp;Jun Luo ,&nbsp;Junmin Ge ,&nbsp;Weihua Chen","doi":"10.1016/j.esci.2024.100313","DOIUrl":"10.1016/j.esci.2024.100313","url":null,"abstract":"<div><div>Alluaudite-type iron-based sulfates are prospective positive-electrode active materials for sodium-ion batteries given their low-cost and high operation voltage, yet suffer from poor intrinsic ionic conductivity and (electro) chemical instability at high temperatures. Herein, a cation-modified Na<sub>2.466</sub>Fe<sub>1.724</sub>Mg<sub>0.043</sub>(SO<sub>4</sub>)<sub>3</sub> with micron-sized spherical structure was reported. The substitutive MgO<sub>6</sub> octahedron featured stronger covalent bonding interactions and enriched the ion transfer pathways within the crystals, facilitating the ionic kinetics in bulk. Using <em>in situ</em> mass spectrometry and quartz crystal microbalance techniques, Mg cations were demonstrated to lower the electron density around O atoms and surficial nucleophilicity of materials, which effectively suppressed their side reactions with H<sub>2</sub>O in air and active ester molecule in electrolyte. This interaction enables an inorganic-rich and uniform interphase to stabilize the cathode/electrolyte interface at high voltage (4.5 ​V vs. Na<sup>+</sup>/Na). The as-prepared cathode exhibits a high discharge capacity of 102.2 mAh g<sup>−1</sup> (voltage platform at 3.74 ​V), remarkable reaction reversibility (average Coulomb efficiency of 99.3 ​% over 300 cycles) at high loading (9.0−9.6 ​mg ​cm<sup>−2</sup>) and temperature (60 ​°C), as well as long-lasting cyclability (70.8 ​%, 5000 cycles). Its application was verified in assembled sodium-ion full cells with a hard carbon negative electrode, showing a long cycling lifetime over 190 cycles.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 2","pages":"Article 100313"},"PeriodicalIF":42.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143512455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delithiation-accelerating and self-healing strategies realizes high-capacity and high-rate black phosphorus anode in wide temperature range
IF 42.9
eScience Pub Date : 2025-03-01 DOI: 10.1016/j.esci.2024.100328
Shaojie Zhang , Yanhua Wan , Yu Cao , Yiming Zhang , Haochen Gong , Xu Liang , Baoshan Zhang , Xiaoyi Wang , Siyu Fang , Jiahong Wang , Wei Li , Jie Sun
{"title":"Delithiation-accelerating and self-healing strategies realizes high-capacity and high-rate black phosphorus anode in wide temperature range","authors":"Shaojie Zhang ,&nbsp;Yanhua Wan ,&nbsp;Yu Cao ,&nbsp;Yiming Zhang ,&nbsp;Haochen Gong ,&nbsp;Xu Liang ,&nbsp;Baoshan Zhang ,&nbsp;Xiaoyi Wang ,&nbsp;Siyu Fang ,&nbsp;Jiahong Wang ,&nbsp;Wei Li ,&nbsp;Jie Sun","doi":"10.1016/j.esci.2024.100328","DOIUrl":"10.1016/j.esci.2024.100328","url":null,"abstract":"<div><div>Black phosphorus (BP) anode with high capacity (2596 mAh g<sup>−1</sup>) and suitable lithiation potential (0.7 ​V vs. Li<sup>+</sup>/Li) is an ideal candidate for high-energy-density and high-safety lithium-ion batteries, however, the practical implementation is greatly limited by its slow reaction kinetics and huge volume expansion. Here, inspired by nature, liquid metal (LM) is explored as a self-heal agent, which can well stabilize the BP anode through buffering the volumetric expansion and re-activating “dead P and Li<sub>x</sub>P”. Moreover, LM also acts as a good catalyst, which can adjust Li ion concentration and reduce the activation energy of delithiation reaction, thus prolonging the cycling life. Therefore, the LM modified BP/graphite (G) composite delivers an excellent high-rate performance of 1123 mAh g<sup>−1</sup> ​at 4 ​C with 80.0 ​% capacity retention after 200 cycles, a superior wide-temperature performance of 1547.5 mAh g<sup>−1</sup> and 569.0 mAh g<sup>−1</sup> ​at 50 ​°C and −20 ​°C, respectively.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 2","pages":"Article 100328"},"PeriodicalIF":42.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143512458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into plasmon-assisted chemical reactions: From fabrication to characterization
IF 42.9
eScience Pub Date : 2025-03-01 DOI: 10.1016/j.esci.2024.100312
Juan Xu , Xinwei Huang , Jing Peng , Shunxing Li , Jian-Feng Li
{"title":"Insights into plasmon-assisted chemical reactions: From fabrication to characterization","authors":"Juan Xu ,&nbsp;Xinwei Huang ,&nbsp;Jing Peng ,&nbsp;Shunxing Li ,&nbsp;Jian-Feng Li","doi":"10.1016/j.esci.2024.100312","DOIUrl":"10.1016/j.esci.2024.100312","url":null,"abstract":"<div><div>The integration of surface plasmons with catalysis has opened a new frontier in the field of chemical energy conversion, offering unprecedented opportunities for enhancing reaction activity and selectivity. This review delves into the optical properties of plasmonic materials, the intricate mechanisms of plasmon-assisted chemical reactions (PACRs), and the fabrication of plasmonic catalysts, highlighting the significance of the structure–performance relationship. The mechanisms of PACRs are summarized to understand their synergistic contributions to reactions. The review further examines modern experimental strategies for characterizing surface plasmon resonance properties, including scanning probe microscope, <em>in situ</em> spectroscopy, and ultrafast laser pump-probe techniques, which provide real-time, dynamic insights into molecular interactions and structural changes with high spatial and temporal resolution. We conclude by outlining the challenges and future prospects for PACRs, emphasizing the need for innovative strategies to fully exploit the potential of PACRs for sustainable energy conversion and environmental remediation.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 2","pages":"Article 100312"},"PeriodicalIF":42.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143512764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerated commercial battery electrode-level degradation diagnosis via only 11-point charging segments
IF 42.9
eScience Pub Date : 2025-01-01 DOI: 10.1016/j.esci.2024.100325
Yu Tian , Cheng Lin , Xiangfeng Meng , Xiao Yu , Hailong Li , Rui Xiong
{"title":"Accelerated commercial battery electrode-level degradation diagnosis via only 11-point charging segments","authors":"Yu Tian ,&nbsp;Cheng Lin ,&nbsp;Xiangfeng Meng ,&nbsp;Xiao Yu ,&nbsp;Hailong Li ,&nbsp;Rui Xiong","doi":"10.1016/j.esci.2024.100325","DOIUrl":"10.1016/j.esci.2024.100325","url":null,"abstract":"<div><div>Accelerated and accurate degradation diagnosis is imperative for the management and reutilization of commercial lithium-ion batteries in the upcoming TWh era. Different from traditional methods, this work proposes a hybrid framework for rapid and accurate degradation diagnosis at the electrode level combining both deep learning, which is used to rapidly and robustly predict polarization-free incremental capacity analysis (ICA) curves in minutes, and physical modeling, which is used to quantitatively reveal the electrode-level degradation modes by decoupling them from the ICA curves. Only measured charging current and voltage signals are used. Results demonstrates that 11 points collected at any starting state-of-charge (SOC) in a minimum of 2.5 ​minutes are sufficient to obtain reliable ICA curves with a mean root mean square error (RMSE) of 0.2774 Ah/V. Accordingly, battery status can be accurately elevated based on their degradation at both macro and electrode levels. Through transfer learning, such a method can also be adapted to different battery chemistries, indicating the enticing potential for wide applications.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100325"},"PeriodicalIF":42.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143145136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic Ni-catalyzed cathode and stabilized Li metal anode for high-performance Li–O2 batteries
IF 42.9
eScience Pub Date : 2025-01-01 DOI: 10.1016/j.esci.2024.100310
Tiansheng Bai , Jiaxian Wang , Hongqiang Zhang , Fengjun Ji , Wei Song , Shenyi Xiao , Dandan Gao , Jingyu Lu , Lijie Ci , Deping Li
{"title":"Atomic Ni-catalyzed cathode and stabilized Li metal anode for high-performance Li–O2 batteries","authors":"Tiansheng Bai ,&nbsp;Jiaxian Wang ,&nbsp;Hongqiang Zhang ,&nbsp;Fengjun Ji ,&nbsp;Wei Song ,&nbsp;Shenyi Xiao ,&nbsp;Dandan Gao ,&nbsp;Jingyu Lu ,&nbsp;Lijie Ci ,&nbsp;Deping Li","doi":"10.1016/j.esci.2024.100310","DOIUrl":"10.1016/j.esci.2024.100310","url":null,"abstract":"<div><div>The Li–O<sub>2</sub> battery (LOB) has attracted growing interest, including for its great potential in next-generation energy storage systems due to its extremely high theoretical specific capacity. However, a series of challenges have seriously hindered LOB development, such as sluggish kinetics during the oxygen reduction and oxygen evolution reactions (ORR/OER) at the cathode, the formation of lithium dendrites, and undesirable corrosion at the lithium metal anode. Herein, we propose a strategy based on the ultra-low loading of atomic Ni catalysts to simultaneously boost the ORR/OER at the cathode while stabilizing the Li metal anode. The resultant LOB delivers a superior discharge capacity (&gt; 16,000 ​mA​h ​g<sup>−1</sup>), excellent long-term cycling stability (&gt; 200 cycles), and enhanced high rate capability (&gt; 300 cycles @ 500 ​mA ​g<sup>−1</sup>). The working mechanisms of these atomic Ni catalysts are revealed through carefully designed <em>in situ</em> experiments and theoretical calculations. This work provides a novel research paradigm for designing high-performance LOBs that are useable in practical applications.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100310"},"PeriodicalIF":42.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143144268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneous structure design for stable Li/Na metal batteries: Progress and prospects 稳定锂/钽金属电池的异质结构设计:进展与前景
IF 42.9
eScience Pub Date : 2025-01-01 DOI: 10.1016/j.esci.2024.100281
Hongyang Chen , Junxiong Wu , Manxian Li , Jingyue Zhao , Zulin Li , Manxi Wang , Xuan Li , Chuanping Li , Xiaochuan Chen , Xiaoyan Li , Yiu-Wing Mai , Yuming Chen
{"title":"Heterogeneous structure design for stable Li/Na metal batteries: Progress and prospects","authors":"Hongyang Chen ,&nbsp;Junxiong Wu ,&nbsp;Manxian Li ,&nbsp;Jingyue Zhao ,&nbsp;Zulin Li ,&nbsp;Manxi Wang ,&nbsp;Xuan Li ,&nbsp;Chuanping Li ,&nbsp;Xiaochuan Chen ,&nbsp;Xiaoyan Li ,&nbsp;Yiu-Wing Mai ,&nbsp;Yuming Chen","doi":"10.1016/j.esci.2024.100281","DOIUrl":"10.1016/j.esci.2024.100281","url":null,"abstract":"<div><div>The growth of dendrites in Li/Na metal batteries is a multifaceted process that is controlled by several factors such as electric field, ion transportation, temperature, and pressure. Rational design of battery components has become a viable approach to address this challenge. Among the various design strategies, heterogeneous structures have been demonstrated to be effective in mitigating uneven metal deposition by reducing the local current density and regulating the deposition sites. In this review, we discuss comprehensively the underlying principles and factors that influence dendrite growth, as well as the synthesis approaches for heterogeneous structures. Furthermore, we provide an overview of the diverse applications of heterogeneous structures in battery components. Finally, we highlight existing challenges and future directions for the use of heterogeneous structures in regulating metal deposition.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100281"},"PeriodicalIF":42.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141141564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding multi-scale ion-transport in solid-state lithium batteries 了解固态锂电池中的多尺度离子传输
IF 42.9
eScience Pub Date : 2025-01-01 DOI: 10.1016/j.esci.2024.100278
Wen Yu , Nanping Deng , Yang Feng , Xiaofan Feng , Hengying Xiang , Lu Gao , Bowen Cheng , Weimin Kang , Kai Zhang
{"title":"Understanding multi-scale ion-transport in solid-state lithium batteries","authors":"Wen Yu ,&nbsp;Nanping Deng ,&nbsp;Yang Feng ,&nbsp;Xiaofan Feng ,&nbsp;Hengying Xiang ,&nbsp;Lu Gao ,&nbsp;Bowen Cheng ,&nbsp;Weimin Kang ,&nbsp;Kai Zhang","doi":"10.1016/j.esci.2024.100278","DOIUrl":"10.1016/j.esci.2024.100278","url":null,"abstract":"<div><div>Solid-state lithium battery (SSLB) is considered as one of the promising candidates for next-generation power batteries due to high safety, unprecedented energy density and favorable adaptability to high pression and temperature. However, the system of solid electrolyte (SE), as one of the most important components in SSLB, is usually plagued by clumsy ionic transport, leading to poor rate performance of the SSLBs. Herein, a unique perspective is proposed to re-examine the ion-transport behavior in lithium conductors by tracing Li<sup>+</sup> at multi-scale, including microscopic, mesoscopic and macroscopic scales. The multi-scale ion-transport mechanisms and corresponding characterization techniques are analyzed in depth. Furthermore, some strategies of structure design to improve ion-transport kinetics at corresponding scales are elaborated systematically, involving the modulation of microscopic homogeneous structure, mesoscopic heterogeneous structure and macroscopic structures, etc. The proposed generalized rules for SEs are expected to construct a close link from mechanism−structure−characterization to high performances for SSLBs.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100278"},"PeriodicalIF":42.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141053573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energetic disorder dominates optical properties and recombination dynamics in tin-lead perovskite nanocrystals 能量无序主导锡铅过氧化物纳米晶体的光学特性和重组动力学
IF 42.9
eScience Pub Date : 2025-01-01 DOI: 10.1016/j.esci.2024.100279
Dandan Wang , Yusheng Li , Yongge Yang , Chao Ding , Yuyao Wei , Dong Liu , Hua Li , Huan Bi , Shikai Chen , Sujun Ji , Boyu Zhang , Yao Guo , Huiyun Wei , Hongshi Li , Shuzi Hayase , Qing Shen
{"title":"Energetic disorder dominates optical properties and recombination dynamics in tin-lead perovskite nanocrystals","authors":"Dandan Wang ,&nbsp;Yusheng Li ,&nbsp;Yongge Yang ,&nbsp;Chao Ding ,&nbsp;Yuyao Wei ,&nbsp;Dong Liu ,&nbsp;Hua Li ,&nbsp;Huan Bi ,&nbsp;Shikai Chen ,&nbsp;Sujun Ji ,&nbsp;Boyu Zhang ,&nbsp;Yao Guo ,&nbsp;Huiyun Wei ,&nbsp;Hongshi Li ,&nbsp;Shuzi Hayase ,&nbsp;Qing Shen","doi":"10.1016/j.esci.2024.100279","DOIUrl":"10.1016/j.esci.2024.100279","url":null,"abstract":"<div><div>Tin-lead alloyed perovskite nanocrystals (PNCs) offer a promising pathway toward low-toxicity and air-stable light-emitting devices. However, substantial energetic disorder has thus far hindered their lighting applications compared to pure lead-based PNCs. A fundamental understanding of this disorder and its impact on optical properties is crucial for overcoming this limitation. Here, using temperature-dependent static and transient absorption spectroscopy, we meticulously distinguish the contributions of static disorder (including defects, impurities, etc.) and dynamic disorder (carrier–phonon interactions). We reveal how these disorders shape band-tail structure and ultimately influence inter-band carrier recombination behaviors. Surprisingly, we find that static and dynamic disorder primarily control band-tail defect states and bandgap renormalization, respectively, which together modulate fast carrier trapping and slow band-band recombination rates. Furthermore, we link these disorders to the tin-induced symmetry-lowering distortions in tin-lead alloyed PNCs. These findings illuminate critical design principles for highly luminescent, low-toxicity tin-lead PNCs, accelerating their adoption in optoelectronic applications.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100279"},"PeriodicalIF":42.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141027486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring the electron redistribution of RuO2 by constructing a Ru-O-La asymmetric configuration for efficient acidic oxygen evolution
IF 42.9
eScience Pub Date : 2025-01-01 DOI: 10.1016/j.esci.2024.100307
Cong-Hui Li , Cheng-Zong Yuan , Xiaolei Huang , Hongrui Zhao , Fuling Wu , Lei Xin , Xiaomeng Zhang , Shufeng Ye , Yunfa Chen
{"title":"Tailoring the electron redistribution of RuO2 by constructing a Ru-O-La asymmetric configuration for efficient acidic oxygen evolution","authors":"Cong-Hui Li ,&nbsp;Cheng-Zong Yuan ,&nbsp;Xiaolei Huang ,&nbsp;Hongrui Zhao ,&nbsp;Fuling Wu ,&nbsp;Lei Xin ,&nbsp;Xiaomeng Zhang ,&nbsp;Shufeng Ye ,&nbsp;Yunfa Chen","doi":"10.1016/j.esci.2024.100307","DOIUrl":"10.1016/j.esci.2024.100307","url":null,"abstract":"<div><div>Stabilizing the highly active RuO<sub>2</sub> electrocatalyst for the oxygen evolution reaction (OER) is critical for the application of proton exchange membrane water electrolysis, but this remains challenging due to the inevitable over-oxidation of Ru in harsh oxidative environments. Herein, we describe constructing Ru-O-La asymmetric configurations into RuO<sub>2</sub> via a facile sol-gel method to tailor electron redistribution and thereby eliminate the over-oxidation of Ru centers. Specifically, the as-prepared optimal La<sub>0.1</sub>Ru<sub>0.9</sub>O<sub>2</sub> shows a low overpotential of 188 ​mV at 10 ​mA ​cm<sup>−2</sup>, a high mass activity of 251 A <span><math><mrow><msup><msub><mi>g</mi><mtext>Ru</mtext></msub><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> at 1.6 ​V vs. reversible hydrogen electrode (RHE), and a long-lasting durability of 63 ​h, far superior to the 8 ​h achieved by standard RuO<sub>2</sub>. Experiments and density functional theory calculations jointly reveal that the Ru-O-La asymmetric configuration could trigger electron redistribution in RuO<sub>2</sub>. More importantly, electron transfer from La to Ru via the Ru-O-La configuration could lead to increased electron density around Ru, thus preventing the over-oxidation of Ru. In addition, electron redistribution tunes the Ru 4d band center’s energy level, which optimizes the adsorption and desorption of oxygen intermediates. This work offers an effective strategy for regulating electronic structure to synergistically boost the activity and stability of RuO<sub>2</sub>-based acidic OER electrocatalysts.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100307"},"PeriodicalIF":42.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143145137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced bulk and interfacial charge transfer in Fe:VOPO4 modified Mo:BiVO4 photoanodes for photoelectrochemical water splitting 用于光电化学水分离的 Fe:VOPO4 改性 Mo:BiVO4 光阳极中增强的体电荷转移和界面电荷转移
IF 42.9
eScience Pub Date : 2025-01-01 DOI: 10.1016/j.esci.2024.100242
Bing He , Yu Cao , Kaijie Lin , Mingjie Wu , Yunhai Zhu , Xun Cui , Liang Hu , Yingkui Yang , Xueqin Liu
{"title":"Enhanced bulk and interfacial charge transfer in Fe:VOPO4 modified Mo:BiVO4 photoanodes for photoelectrochemical water splitting","authors":"Bing He ,&nbsp;Yu Cao ,&nbsp;Kaijie Lin ,&nbsp;Mingjie Wu ,&nbsp;Yunhai Zhu ,&nbsp;Xun Cui ,&nbsp;Liang Hu ,&nbsp;Yingkui Yang ,&nbsp;Xueqin Liu","doi":"10.1016/j.esci.2024.100242","DOIUrl":"10.1016/j.esci.2024.100242","url":null,"abstract":"<div><div>Bismuth vanadate (BiVO<sub>4</sub>) is a promising photoanode material for photoelectrochemical (PEC) water oxidation. However, its performance is greatly hindered by poor bulk and interfacial charge transfer. Herein, to address this issue, iron doped vanadyl phosphate (Fe:VOPO<sub>4</sub>) was grafted on molybdenum doped BiVO<sub>4</sub> (Mo:BiVO<sub>4</sub>) for significantly enhancing charge transfer and oxygen evolution kinetics simultaneously. Consequently, the resultant Fe:VOPO<sub>4</sub>/Mo:BVO<sub>4</sub> photoanode exhibits a remarkable photocurrent density of 6.59 ​mA ​cm<sup>−2</sup> ​at 1.23 ​V versus the reversible hydrogen electrode (V<sub>RHE</sub>) under AM 1.5G illumination, over approximately 5.5 times as high as that of pristine BiVO<sub>4</sub>. Systematic studies have demonstrated that the hopping activation energy of small polarons is significantly reduced due to the Mo doping, resulting in accelerated bulk charge transfer. More importantly, the deposition of Fe:VOPO<sub>4</sub> promotes the interfacial charge transfer between Mo:BiVO<sub>4</sub> and Fe:VOPO<sub>4</sub> via the construction of V–O–V and P–O bonds, in addition to facilitating water splitting kinetics. This work provides a general strategy for optimizing charge transfer process, especially at the interface between photoanodes and cocatalysts.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100242"},"PeriodicalIF":42.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信