Yu Tian , Cheng Lin , Xiangfeng Meng , Xiao Yu , Hailong Li , Rui Xiong
{"title":"仅通过11点充电段加速商用电池电极级退化诊断","authors":"Yu Tian , Cheng Lin , Xiangfeng Meng , Xiao Yu , Hailong Li , Rui Xiong","doi":"10.1016/j.esci.2024.100325","DOIUrl":null,"url":null,"abstract":"<div><div>Accelerated and accurate degradation diagnosis is imperative for the management and reutilization of commercial lithium-ion batteries in the upcoming TWh era. Different from traditional methods, this work proposes a hybrid framework for rapid and accurate degradation diagnosis at the electrode level combining both deep learning, which is used to rapidly and robustly predict polarization-free incremental capacity analysis (ICA) curves in minutes, and physical modeling, which is used to quantitatively reveal the electrode-level degradation modes by decoupling them from the ICA curves. Only measured charging current and voltage signals are used. Results demonstrates that 11 points collected at any starting state-of-charge (SOC) in a minimum of 2.5 minutes are sufficient to obtain reliable ICA curves with a mean root mean square error (RMSE) of 0.2774 Ah/V. Accordingly, battery status can be accurately elevated based on their degradation at both macro and electrode levels. Through transfer learning, such a method can also be adapted to different battery chemistries, indicating the enticing potential for wide applications.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100325"},"PeriodicalIF":42.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated commercial battery electrode-level degradation diagnosis via only 11-point charging segments\",\"authors\":\"Yu Tian , Cheng Lin , Xiangfeng Meng , Xiao Yu , Hailong Li , Rui Xiong\",\"doi\":\"10.1016/j.esci.2024.100325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accelerated and accurate degradation diagnosis is imperative for the management and reutilization of commercial lithium-ion batteries in the upcoming TWh era. Different from traditional methods, this work proposes a hybrid framework for rapid and accurate degradation diagnosis at the electrode level combining both deep learning, which is used to rapidly and robustly predict polarization-free incremental capacity analysis (ICA) curves in minutes, and physical modeling, which is used to quantitatively reveal the electrode-level degradation modes by decoupling them from the ICA curves. Only measured charging current and voltage signals are used. Results demonstrates that 11 points collected at any starting state-of-charge (SOC) in a minimum of 2.5 minutes are sufficient to obtain reliable ICA curves with a mean root mean square error (RMSE) of 0.2774 Ah/V. Accordingly, battery status can be accurately elevated based on their degradation at both macro and electrode levels. Through transfer learning, such a method can also be adapted to different battery chemistries, indicating the enticing potential for wide applications.</div></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"5 1\",\"pages\":\"Article 100325\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141724001241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724001241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Accelerated commercial battery electrode-level degradation diagnosis via only 11-point charging segments
Accelerated and accurate degradation diagnosis is imperative for the management and reutilization of commercial lithium-ion batteries in the upcoming TWh era. Different from traditional methods, this work proposes a hybrid framework for rapid and accurate degradation diagnosis at the electrode level combining both deep learning, which is used to rapidly and robustly predict polarization-free incremental capacity analysis (ICA) curves in minutes, and physical modeling, which is used to quantitatively reveal the electrode-level degradation modes by decoupling them from the ICA curves. Only measured charging current and voltage signals are used. Results demonstrates that 11 points collected at any starting state-of-charge (SOC) in a minimum of 2.5 minutes are sufficient to obtain reliable ICA curves with a mean root mean square error (RMSE) of 0.2774 Ah/V. Accordingly, battery status can be accurately elevated based on their degradation at both macro and electrode levels. Through transfer learning, such a method can also be adapted to different battery chemistries, indicating the enticing potential for wide applications.