Energetic disorder dominates optical properties and recombination dynamics in tin-lead perovskite nanocrystals

IF 42.9 Q1 ELECTROCHEMISTRY
Dandan Wang , Yusheng Li , Yongge Yang , Chao Ding , Yuyao Wei , Dong Liu , Hua Li , Huan Bi , Shikai Chen , Sujun Ji , Boyu Zhang , Yao Guo , Huiyun Wei , Hongshi Li , Shuzi Hayase , Qing Shen
{"title":"Energetic disorder dominates optical properties and recombination dynamics in tin-lead perovskite nanocrystals","authors":"Dandan Wang ,&nbsp;Yusheng Li ,&nbsp;Yongge Yang ,&nbsp;Chao Ding ,&nbsp;Yuyao Wei ,&nbsp;Dong Liu ,&nbsp;Hua Li ,&nbsp;Huan Bi ,&nbsp;Shikai Chen ,&nbsp;Sujun Ji ,&nbsp;Boyu Zhang ,&nbsp;Yao Guo ,&nbsp;Huiyun Wei ,&nbsp;Hongshi Li ,&nbsp;Shuzi Hayase ,&nbsp;Qing Shen","doi":"10.1016/j.esci.2024.100279","DOIUrl":null,"url":null,"abstract":"<div><div>Tin-lead alloyed perovskite nanocrystals (PNCs) offer a promising pathway toward low-toxicity and air-stable light-emitting devices. However, substantial energetic disorder has thus far hindered their lighting applications compared to pure lead-based PNCs. A fundamental understanding of this disorder and its impact on optical properties is crucial for overcoming this limitation. Here, using temperature-dependent static and transient absorption spectroscopy, we meticulously distinguish the contributions of static disorder (including defects, impurities, etc.) and dynamic disorder (carrier–phonon interactions). We reveal how these disorders shape band-tail structure and ultimately influence inter-band carrier recombination behaviors. Surprisingly, we find that static and dynamic disorder primarily control band-tail defect states and bandgap renormalization, respectively, which together modulate fast carrier trapping and slow band-band recombination rates. Furthermore, we link these disorders to the tin-induced symmetry-lowering distortions in tin-lead alloyed PNCs. These findings illuminate critical design principles for highly luminescent, low-toxicity tin-lead PNCs, accelerating their adoption in optoelectronic applications.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100279"},"PeriodicalIF":42.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724000636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Tin-lead alloyed perovskite nanocrystals (PNCs) offer a promising pathway toward low-toxicity and air-stable light-emitting devices. However, substantial energetic disorder has thus far hindered their lighting applications compared to pure lead-based PNCs. A fundamental understanding of this disorder and its impact on optical properties is crucial for overcoming this limitation. Here, using temperature-dependent static and transient absorption spectroscopy, we meticulously distinguish the contributions of static disorder (including defects, impurities, etc.) and dynamic disorder (carrier–phonon interactions). We reveal how these disorders shape band-tail structure and ultimately influence inter-band carrier recombination behaviors. Surprisingly, we find that static and dynamic disorder primarily control band-tail defect states and bandgap renormalization, respectively, which together modulate fast carrier trapping and slow band-band recombination rates. Furthermore, we link these disorders to the tin-induced symmetry-lowering distortions in tin-lead alloyed PNCs. These findings illuminate critical design principles for highly luminescent, low-toxicity tin-lead PNCs, accelerating their adoption in optoelectronic applications.

Abstract Image

能量无序主导锡铅过氧化物纳米晶体的光学特性和重组动力学
锡铅合金钙钛矿纳米晶体(PNCs)为低毒性和空气稳定的发光器件提供了一条有前途的途径。然而,与纯铅基pnc相比,大量的能量紊乱迄今为止阻碍了它们的照明应用。对这种无序及其对光学性质的影响的基本理解对于克服这一限制至关重要。在这里,使用温度相关的静态和瞬态吸收光谱,我们仔细区分了静态无序(包括缺陷,杂质等)和动态无序(载流子-声子相互作用)的贡献。我们揭示了这些紊乱如何形成带尾结构并最终影响带间载流子重组行为。令人惊讶的是,我们发现静态无序和动态无序分别主要控制带尾缺陷状态和带隙重整化,它们共同调节快速载波捕获和缓慢的带复合速率。此外,我们将这些失调与锡铅合金pnc中锡引起的对称性降低畸变联系起来。这些发现阐明了高发光、低毒性锡铅pnc的关键设计原则,加速了它们在光电应用中的采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信