eScience最新文献

筛选
英文 中文
Revealing proton-coupled exchange mechanism in aqueous ion-exchange synthesis of nickel-rich layered cathodes for lithium-ion batteries 揭示锂离子电池富镍层状阴极水离子交换合成中的质子耦合交换机制
IF 42.9
eScience Pub Date : 2024-08-01 DOI: 10.1016/j.esci.2024.100229
{"title":"Revealing proton-coupled exchange mechanism in aqueous ion-exchange synthesis of nickel-rich layered cathodes for lithium-ion batteries","authors":"","doi":"10.1016/j.esci.2024.100229","DOIUrl":"10.1016/j.esci.2024.100229","url":null,"abstract":"<div><p>Ion exchange is a promising synthetic method for alleviating severe cation mixing in traditional layered oxide materials for lithium-ion batteries, leading to enhanced structural stability. However, the underlying mechanisms of ion exchange are still not fully understood. Such a fundamental study of the ion-exchange mechanism is needed for achieving the controllable synthesis of layered oxides with a stable structure. Herein, we thoroughly unearth the underlying mechanism that triggers the ion exchange of Ni-rich materials in aqueous solutions by examining time-resolved structural evolution combined with theoretical calculations. Our results reveal that the reaction pathway of ion exchange can be divided into two steps: protonation and lithiation. The proton is the key to achieving charge balance in the ion exchange process, as revealed by X-ray adsorption spectroscopy and inductive coupled plasma analysis. In addition, the intermediate product shows high lattice distortion during ion exchange, but it ends up with a most stable product with high lattice energy. Such apparent discrepancies in lattice energy between materials before and after ion exchange emphasize the importance of synthetic design in structural stability. This work provides new insights into the ion-exchange synthesis of Ni-rich oxide materials, which advances the development of cathode materials for high-performance lithium-ion batteries.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 4","pages":"Article 100229"},"PeriodicalIF":42.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141724000028/pdfft?md5=6879aa6f1f85e2c42b209cc154ebad09&pid=1-s2.0-S2667141724000028-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139374659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opportunities and challenges in cathode development for non-lithium-ion batteries 非锂离子电池正极开发的机遇与挑战
IF 42.9
eScience Pub Date : 2024-08-01 DOI: 10.1016/j.esci.2024.100232
{"title":"Opportunities and challenges in cathode development for non-lithium-ion batteries","authors":"","doi":"10.1016/j.esci.2024.100232","DOIUrl":"10.1016/j.esci.2024.100232","url":null,"abstract":"<div><p>Lithium (Li)-ion batteries have stimulated the societal transformation to clean energy systems. This carry-on electricity is revolutionizing how society communicates, functions, and evolves efficiently by enabling mobile electronics, zero-emission electric vehicles, and stationary energy storage. In preparation for the sustainable energy future, however, there are growing concerns about depleting critical elements used in the Li technology (<em>e.g.</em>, lithium, cobalt, and nickel), especially for large-scale applications that will accelerate the rate of elemental consumption. Various non-Li-based rechargeable batteries composed of earth-abundant elements, such as sodium, potassium, magnesium, and calcium, have been proposed and explored as alternative systems to promote sustainable development of energy storage. In this perspective, we discuss challenges in Li-ion batteries in the sustainability aspect and provide our opinions on the potential applications of non-Li-based batteries. We also highlight the current status, important progress, and remaining challenges of the Li-alternative technologies.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 4","pages":"Article 100232"},"PeriodicalIF":42.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141724000053/pdfft?md5=31ff7bbab49dd2b7b8e34bc89a9c4a24&pid=1-s2.0-S2667141724000053-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139462329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunction integration within magnetic CNT-bridged MXene/CoNi based phase change materials 磁性 CNT 桥接 MXene/CoNi 相变材料的多功能集成
eScience Pub Date : 2024-06-22 DOI: 10.1016/j.esci.2024.100292
Yan Gao, Xiao Chen, Xu Jin, Chenjun Zhang, Xi Zhang, Xiaodan Liu, Yinhui Li, Yang Li, Jinjie Lin, Hongyi Gao, Ge Wang
{"title":"Multifunction integration within magnetic CNT-bridged MXene/CoNi based phase change materials","authors":"Yan Gao, Xiao Chen, Xu Jin, Chenjun Zhang, Xi Zhang, Xiaodan Liu, Yinhui Li, Yang Li, Jinjie Lin, Hongyi Gao, Ge Wang","doi":"10.1016/j.esci.2024.100292","DOIUrl":"https://doi.org/10.1016/j.esci.2024.100292","url":null,"abstract":"Developing advanced nanocomposite phase change materials (PCMs) integrating zero-energy thermal management, microwave absorption, photothermal therapy and electrical signal detection can promote the leapfrog development of flexible wearable electronic devices. For this goal, we propose a multidimensional collaborative strategy combining two-dimensional (2D) MXene nanosheets with metal-organic framework-derived one-dimensional (1D) carbon nanotubes (CNTs) and zero-dimensional (0D) metal nanoparticles. After encapsulating paraffin wax (PW) in three-dimensional (3D) networked multidimensional MXene/CoNi–C, the resulting composite PCMs exhibit excellent thermal energy storage capacity and long-term thermally reliable stability. Benefiting from the synergistically enhanced photothermal effects of CNTs, Co/Ni nanoparticles and MXene, PW@MXene/CoNi–C can capture photons efficiently and transfer phonons quickly, yielding an ultrahigh photothermal conversion and storage efficiency of 97.5%. Additionally, PW@MXene/CoNi–C composite PCMs exhibit high microwave absorption with a minimum reflection loss of −49.3 ​dB at 8.03 ​GHz in heat-related electronic application scenarios. More attractively, the corresponding flexible phase change film can simultaneously achieve thermal management and electromagnetic shielding of electronic devices, as well as photothermal therapy and electrical signal detection for individuals. This functional integration design provides an important reference for developing advanced flexible multifunctional wearable materials and devices.","PeriodicalId":100489,"journal":{"name":"eScience","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141568875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly ordered inkjet-printed quantum-dot thin films enable efficient and stable QLEDs with EQE exceeding 23% 高度有序的喷墨打印量子点薄膜实现了高效稳定的 QLED,EQE 超过 23
eScience Pub Date : 2024-06-01 DOI: 10.1016/j.esci.2023.100227
Changting Wei , Bo Xu , Meng Zhang , Zhenhuang Su , Jiawei Gu , Wenrui Guo , Xingyu Gao , Wenming Su , Zheng Cui , Seokwoo Jeon , Zhiyong Fan , Haibo Zeng
{"title":"Highly ordered inkjet-printed quantum-dot thin films enable efficient and stable QLEDs with EQE exceeding 23%","authors":"Changting Wei ,&nbsp;Bo Xu ,&nbsp;Meng Zhang ,&nbsp;Zhenhuang Su ,&nbsp;Jiawei Gu ,&nbsp;Wenrui Guo ,&nbsp;Xingyu Gao ,&nbsp;Wenming Su ,&nbsp;Zheng Cui ,&nbsp;Seokwoo Jeon ,&nbsp;Zhiyong Fan ,&nbsp;Haibo Zeng","doi":"10.1016/j.esci.2023.100227","DOIUrl":"10.1016/j.esci.2023.100227","url":null,"abstract":"<div><p>Inkjet-printed quantum dot light-emitting diodes (QLEDs) are emerging as a promising technology for next-generation displays. However, the progress in fabricating QLEDs using inkjet printing technique has been slower compared to spin-coated devices, particularly in terms of efficiency and stability. The key to achieving high performance QLEDs lies in creating a highly ordered and uniform inkjet-printed quantum dot (QD) thin film. In this study, we present a highly effective strategy to significantly improve the quality of inkjet-printed CdZnSe/CdZnS/ZnS QD thin films through a pressure-assisted thermal annealing (PTA) approach. Benefiting from this PTA process, a high quality QD thin film with ordered packing, low surface roughness, high photoluminescence and excellent electrical property is obtained. The mechanism behind the PTA process and its profound impact on device performance have been thoroughly investigated and understood. Consequently, a record high external quantum efficiency (EQE) of 23.08% with an impressive operational lifetime (<em>T</em><sub>50</sub>) of up to 343,342 ​h@100 ​cd ​m<sup>−2</sup>, and a record EQE of 22.43% with <em>T</em><sub>50</sub> exceeding to 1,500,463 ​h@100 ​cd ​m<sup>−2</sup> are achieved in inkjet-printed red and green CdZnSe-based QLEDs, respectively. This work highlights the PTA process as an important approach to realize highly efficient and stable inkjet-printed QLEDs, thus advancing QLED technology to practical applications.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 3","pages":"Article 100227"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001817/pdfft?md5=8b2610af39fa4fe085c24a1656ce25b4&pid=1-s2.0-S2667141723001817-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139063926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking power of neighboring vacancies in boosting hydrogen evolution reactions on two-dimensional NiPS3 monolayer 释放邻位空位的能量,促进二维 NiPS3 单层上的氢进化反应
eScience Pub Date : 2024-06-01 DOI: 10.1016/j.esci.2023.100204
Hyun Gu Han , Jae Won Choi , Minsu Son , Ki Chul Kim
{"title":"Unlocking power of neighboring vacancies in boosting hydrogen evolution reactions on two-dimensional NiPS3 monolayer","authors":"Hyun Gu Han ,&nbsp;Jae Won Choi ,&nbsp;Minsu Son ,&nbsp;Ki Chul Kim","doi":"10.1016/j.esci.2023.100204","DOIUrl":"10.1016/j.esci.2023.100204","url":null,"abstract":"<div><p>This study investigates the effect of defect engineering on the catalytic activity of a NiPS<sub>3</sub> monolayer catalyst for the hydrogen evolution reaction (HER). Three different types of vacancies on the basal plane of the monolayer are explored through a multi-step mechanism involving the dissociative adsorption of a water molecule and subsequent electrochemical adsorption of the dissociated proton. Co-formation of vacancies in both Ni and S sites is found to be the most effective in enhancing the catalytic performance of the monolayer. A key resource for the reaction thermodynamics is the S-substitution-like physisorption of a water molecule on a vacant S site, followed by the dissociative occupation of OH and H into vacant sites of S and Ni elements, boosted by the NiS di-vacancy configuration with low activation energy barriers. Investigation reveals the highest contribution of bonding orbitals to the monolayer-H bond makes it the most desirable defect engineering approach for transition metal phosphorus chalcogenides with high HER activities. Overall, this study highlights the significance of controlled defect engineering in augmenting the catalytic performance of NiPS<sub>3</sub> monolayer catalysts for HER.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 3","pages":"Article 100204"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001490/pdfft?md5=2577f8e8a2575e0576f900fadc293eda&pid=1-s2.0-S2667141723001490-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135810235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reliability of transparent conductive oxide in ambient acid and implications for silicon solar cells 透明导电氧化物在环境酸中的可靠性及其对硅太阳能电池的影响
eScience Pub Date : 2024-06-01 DOI: 10.1016/j.esci.2024.100241
Jian Yu , Yu Bai , Qingqing Qiu , Zehua Sun , Lei Ye , Cheng Qian , Zhu Ma , Xin Song , Tao Chen , Junsheng Yu , Wenzhu Liu
{"title":"Reliability of transparent conductive oxide in ambient acid and implications for silicon solar cells","authors":"Jian Yu ,&nbsp;Yu Bai ,&nbsp;Qingqing Qiu ,&nbsp;Zehua Sun ,&nbsp;Lei Ye ,&nbsp;Cheng Qian ,&nbsp;Zhu Ma ,&nbsp;Xin Song ,&nbsp;Tao Chen ,&nbsp;Junsheng Yu ,&nbsp;Wenzhu Liu","doi":"10.1016/j.esci.2024.100241","DOIUrl":"10.1016/j.esci.2024.100241","url":null,"abstract":"<div><p>Transparent conductive oxide (TCO) films, known for their role as carrier transport layers in solar cells, can be adversely affected by hydrolysis products from encapsulants. In this study, we explored the morphology, optical-electrical properties, and deterioration mechanisms of In<sub>2</sub>O<sub>3</sub>-based TCO films under acetic acid stress. A reduction in film thickness and carrier concentration due to acid-induced corrosion was observed. X-ray photoelectron spectroscopy and inductively coupled plasma emission spectrometry analyses revealed that TCOs doped with less-reactive metals exhibited enhanced corrosion resistance. The efficiency of silicon heterojunction (SHJ) solar cells with tin-doped indium oxide, titanium-doped indium oxide, and zinc-doped indium oxide films decreased by 10%, 26%, and 100%, respectively, after 200 ​h of corrosion. We also found that tungsten-doped indium oxide could effectively safeguard SHJ solar cells against acetic acid corrosion, which offers a potential option for achieving long-term stability and lower levelized cost of solar cell systems. This research provides essential insights into selecting TCO films for solar cells and highlights the implications of ethylene-vinyl acetate hydrolysis for photovoltaic modules.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 3","pages":"Article 100241"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141724000181/pdfft?md5=4b90f80e8c7227bf95ea4f3f096e7324&pid=1-s2.0-S2667141724000181-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effect of oxygen species and vacancy for enhanced electrochemical CO2 conversion to formate on indium oxide 氧化铟上氧物种和空位对增强二氧化碳转化为甲酸盐的电化学作用的协同效应
eScience Pub Date : 2024-06-01 DOI: 10.1016/j.esci.2024.100246
Tengfei Ma , Zihao Jiao , Haoran Qiu , Feng Wang, Ya Liu, Liejin Guo
{"title":"Synergistic effect of oxygen species and vacancy for enhanced electrochemical CO2 conversion to formate on indium oxide","authors":"Tengfei Ma ,&nbsp;Zihao Jiao ,&nbsp;Haoran Qiu ,&nbsp;Feng Wang,&nbsp;Ya Liu,&nbsp;Liejin Guo","doi":"10.1016/j.esci.2024.100246","DOIUrl":"10.1016/j.esci.2024.100246","url":null,"abstract":"<div><p>Indium-based oxides are promising electrocatalysts for producing formate via CO<sub>2</sub> reduction reaction, in which ∗OCHO is considered the key intermediate. Here, we identified that the ∗COOH pathway could be preferential to produce formate on In<sub>2</sub>O<sub>3</sub> of In/In<sub>2</sub>O<sub>3</sub> heterojunction due to the synergistic effect of oxygen species and vacancy. Specifically, ∗CO<sub>2</sub> and ∗COOH were observed on In<sub>2</sub>O<sub>3</sub> and related to formate production by <em>in situ</em> Raman spectroscopy. The theoretical calculations further demonstrated that the energy barrier of the ∗COOH formation on In<sub>2</sub>O<sub>3</sub> was decreased in the presence of oxygen vacancy, similar to or lower than that of the ∗OCHO formation on the In surface. As a result, a formate selectivity of over 90% was obtained on prepared In/In<sub>2</sub>O<sub>3</sub> heterojunction with 343 ​± ​7 ​mA ​cm<sup>−2</sup> partial current density. Furthermore, when using a Si-based photovoltaic as an energy supplier, 10.11% solar–to–fuel energy efficiency was achieved.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 3","pages":"Article 100246"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141724000259/pdfft?md5=b5d9ca7861e20f0d229e8e7010ee898c&pid=1-s2.0-S2667141724000259-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139668121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the potential of silicon anodes in lithium-ion batteries: A claw-inspired binder with synergistic interface bonding 释放硅阳极在锂离子电池中的潜力:具有协同界面键合作用的爪启发粘合剂
eScience Pub Date : 2024-06-01 DOI: 10.1016/j.esci.2023.100207
Jun Shen , Shilin Zhang , Haoli Wang , Renxin Wang , Yingying Hu , Yiyang Mao , Ruilin Wang , Huihui Zhang , Yumeng Du , Yameng Fan , Yingtang Zhou , Zaiping Guo , Baofeng Wang
{"title":"Unlocking the potential of silicon anodes in lithium-ion batteries: A claw-inspired binder with synergistic interface bonding","authors":"Jun Shen ,&nbsp;Shilin Zhang ,&nbsp;Haoli Wang ,&nbsp;Renxin Wang ,&nbsp;Yingying Hu ,&nbsp;Yiyang Mao ,&nbsp;Ruilin Wang ,&nbsp;Huihui Zhang ,&nbsp;Yumeng Du ,&nbsp;Yameng Fan ,&nbsp;Yingtang Zhou ,&nbsp;Zaiping Guo ,&nbsp;Baofeng Wang","doi":"10.1016/j.esci.2023.100207","DOIUrl":"10.1016/j.esci.2023.100207","url":null,"abstract":"<div><p>Binders play a crucial role in enhancing the cycling stability of silicon anodes in next-generation Li-ion batteries. However, traditional linear polymer binders have difficulty withstanding the volume expansion of silicon during cycling. Herein, inspired by the fact that animals’ claws can grasp objects firmly, a claw-like taurine-grafted-poly (acrylic acid) binder (Tau-g-PAA) is designed to improve the electrochemical performance of silicon anodes. The synergistic effects of different polar groups (sulfo and carboxyl) in Tau-g-PAA facilitate the formation of multidimensional interactions with silicon nanoparticles and the diffusion of Li ions, thereby greatly improving the stability and rate performance of silicon anodes, which aligns with results from density functional theory (DFT) simulations. As expected, a Tau-g-PAA/Si electrode exhibits excellent cycling performance with a high specific capacity of 1003 ​mA ​h ​g<sup>−1</sup> ​at 1 ​C (1 ​C ​= ​4200 ​mA ​h ​g<sup>−1</sup>) after 300 cycles, and a high rate performance. The design strategy of using polar small molecule-grafted polymers to create claw-like structures could inspire the development of better binders for silicon-based anodes.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 3","pages":"Article 100207"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001532/pdfft?md5=2a5d850efe52e6935ff0d1d0541f4a19&pid=1-s2.0-S2667141723001532-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136128020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revitalizing sodium-ion batteries via controllable microstructures and advanced electrolytes for hard carbon 通过硬碳的可控微结构和先进电解质振兴钠离子电池
eScience Pub Date : 2024-06-01 DOI: 10.1016/j.esci.2023.100181
Feng Wang , Zhenming Jiang , Yanyan Zhang , Yanlei Zhang , Jidao Li , Huibo Wang , Yinzhu Jiang , Guichuan Xing , Hongchao Liu , Yuxin Tang
{"title":"Revitalizing sodium-ion batteries via controllable microstructures and advanced electrolytes for hard carbon","authors":"Feng Wang ,&nbsp;Zhenming Jiang ,&nbsp;Yanyan Zhang ,&nbsp;Yanlei Zhang ,&nbsp;Jidao Li ,&nbsp;Huibo Wang ,&nbsp;Yinzhu Jiang ,&nbsp;Guichuan Xing ,&nbsp;Hongchao Liu ,&nbsp;Yuxin Tang","doi":"10.1016/j.esci.2023.100181","DOIUrl":"10.1016/j.esci.2023.100181","url":null,"abstract":"<div><p>Sodium-ion batteries (SIBs) with low cost and high safety are considered as an electrochemical energy storage technology suitable for large-scale energy storage. Hard carbon, which is inexpensive and has both high capacity and low sodium storage potential, is regarded as the most promising anode for commercial SIBs. However, the commercialization of hard carbon still faces technical issues of low initial Coulombic efficiency, poor rate performance, and insufficient cycling stability, due to the intrinsically irregular microstructure of hard carbon. To address these challenges, the rational design of the hard carbon microstructure is crucial for achieving high-performance SIBs, <em>via</em> gaining an in-depth understanding of its structure–performance correlations. In this context, our review firstly describes the sodium storage mechanism from the perspective of the hard carbon microstructure's formation. We then summarize the state-of-art development of hard carbon, providing a critical overview of emergence of hard carbon in terms of precursor selection, microstructure design, and electrolyte regulation to optimize strategies for addressing practical problems. Finally, we highlight directions for the future development of hard carbon to achieve the commercialization of high-performance SIBs. We believe this review will serve as basic guidance for the rational design of hard carbon and stimulate more exciting research into other types of energy storage devices.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 3","pages":"Article 100181"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001210/pdfft?md5=8af1415a0a6cdaed9b8772ad8ae07019&pid=1-s2.0-S2667141723001210-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82602291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in rare earth compounds for lithium–sulfur batteries 锂硫电池用稀土化合物的最新进展
eScience Pub Date : 2024-06-01 DOI: 10.1016/j.esci.2023.100180
Bixia Lin , Yuanyuan Zhang , Weifeng Li , Junkang Huang , Yong Yang , Siu Wing Or , Zhenyu Xing , Shaojun Guo
{"title":"Recent advances in rare earth compounds for lithium–sulfur batteries","authors":"Bixia Lin ,&nbsp;Yuanyuan Zhang ,&nbsp;Weifeng Li ,&nbsp;Junkang Huang ,&nbsp;Yong Yang ,&nbsp;Siu Wing Or ,&nbsp;Zhenyu Xing ,&nbsp;Shaojun Guo","doi":"10.1016/j.esci.2023.100180","DOIUrl":"10.1016/j.esci.2023.100180","url":null,"abstract":"<div><p>Lithium–sulfur batteries are considered potential high-energy-density candidates to replace current lithium-ion batteries. However, several problems remain to be solved, including low conductivity, huge volume change, and a severe shuttle effect on the cathode side, as well as inevitable lithium dendrites on the anode side. Rare earth compounds, which play vital roles in various industries, show latent capacity as cathode hosts or interlayers to tackle the inherent problems of lithium–sulfur batteries. However, the application of rare earth compounds in lithium–sulfur batteries has not been reviewed so far, despite they showing obvious advantages for tuning polysulfide retention and conversion. In this mini-review, we start by introducing the concept of lithium–sulfur batteries and providing background information on rare earth-based materials. In the main body, we explore rare earth compounds as cathode hosts or interlayers, then discuss various types of each. Finally, we offer an outlook on the existing challenges and possible opportunities for using rare earth compounds as cathode hosts or interlayers for lithium–sulfur batteries.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 3","pages":"Article 100180"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001209/pdfft?md5=27acbe1138a9e54747d8b31bc8b0cb39&pid=1-s2.0-S2667141723001209-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88167287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信