Junchao Yu , Zichao Xi , Jinhui Su , Peng Jing , Xuan Xu , Baocang Liu , Yu Wang , Jun Zhang
{"title":"Influence of active hydrogen on pathway selection in electrochemical nitrate reduction","authors":"Junchao Yu , Zichao Xi , Jinhui Su , Peng Jing , Xuan Xu , Baocang Liu , Yu Wang , Jun Zhang","doi":"10.1016/j.esci.2024.100350","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical nitrate reduction reaction in alkaline condition involves two reactants, the nitrate (<span><math><mrow><msup><msub><mtext>NO</mtext><mn>3</mn></msub><mo>−</mo></msup></mrow></math></span>) and the water (H<sub>2</sub>O). Although the significance of the active ∗H species produced from the dissociation of H<sub>2</sub>O has been proved, the correlation between the reaction pathways and the ∗H species is often overlooked. Herein, Co(OH)<sub>2</sub>–CoP supported Ru nanoclusters is designed for electrocatalytic nitrate reduction and shows a record-high faradaic efficiency of 99.7% at an ultralow potential of 0.1 V versus reversible hydrogen electrode. Experiments and theoretical calculations reveal that in addition to the faster proton transfer kinetics, the reaction pathway is strongly correlated with ∗H supply with the aid of CoP, that is, the direct hydrogenation of ∗NOH instead of deprotonation over Ru sites with the lowest energy barrier is promoted with the moderate production of ∗H species. This work provides new insights into the impact of ∗H species on the thermodynamics and kinetics of electrocatalytic nitrate reduction.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 3","pages":"Article 100350"},"PeriodicalIF":42.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724001496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical nitrate reduction reaction in alkaline condition involves two reactants, the nitrate () and the water (H2O). Although the significance of the active ∗H species produced from the dissociation of H2O has been proved, the correlation between the reaction pathways and the ∗H species is often overlooked. Herein, Co(OH)2–CoP supported Ru nanoclusters is designed for electrocatalytic nitrate reduction and shows a record-high faradaic efficiency of 99.7% at an ultralow potential of 0.1 V versus reversible hydrogen electrode. Experiments and theoretical calculations reveal that in addition to the faster proton transfer kinetics, the reaction pathway is strongly correlated with ∗H supply with the aid of CoP, that is, the direct hydrogenation of ∗NOH instead of deprotonation over Ru sites with the lowest energy barrier is promoted with the moderate production of ∗H species. This work provides new insights into the impact of ∗H species on the thermodynamics and kinetics of electrocatalytic nitrate reduction.