Influence of active hydrogen on pathway selection in electrochemical nitrate reduction

IF 42.9 Q1 ELECTROCHEMISTRY
Junchao Yu , Zichao Xi , Jinhui Su , Peng Jing , Xuan Xu , Baocang Liu , Yu Wang , Jun Zhang
{"title":"Influence of active hydrogen on pathway selection in electrochemical nitrate reduction","authors":"Junchao Yu ,&nbsp;Zichao Xi ,&nbsp;Jinhui Su ,&nbsp;Peng Jing ,&nbsp;Xuan Xu ,&nbsp;Baocang Liu ,&nbsp;Yu Wang ,&nbsp;Jun Zhang","doi":"10.1016/j.esci.2024.100350","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical nitrate reduction reaction in alkaline condition involves two reactants, the nitrate (<span><math><mrow><msup><msub><mtext>NO</mtext><mn>3</mn></msub><mo>−</mo></msup></mrow></math></span>) and the water (H<sub>2</sub>O). Although the significance of the active ∗H species produced from the dissociation of H<sub>2</sub>O has been proved, the correlation between the reaction pathways and the ∗H species is often overlooked. Herein, Co(OH)<sub>2</sub>–CoP supported Ru nanoclusters is designed for electrocatalytic nitrate reduction and shows a record-high faradaic efficiency of 99.7% at an ultralow potential of 0.1 ​V versus reversible hydrogen electrode. Experiments and theoretical calculations reveal that in addition to the faster proton transfer kinetics, the reaction pathway is strongly correlated with ∗H supply with the aid of CoP, that is, the direct hydrogenation of ∗NOH instead of deprotonation over Ru sites with the lowest energy barrier is promoted with the moderate production of ∗H species. This work provides new insights into the impact of ∗H species on the thermodynamics and kinetics of electrocatalytic nitrate reduction.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 3","pages":"Article 100350"},"PeriodicalIF":42.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724001496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical nitrate reduction reaction in alkaline condition involves two reactants, the nitrate (NO3) and the water (H2O). Although the significance of the active ∗H species produced from the dissociation of H2O has been proved, the correlation between the reaction pathways and the ∗H species is often overlooked. Herein, Co(OH)2–CoP supported Ru nanoclusters is designed for electrocatalytic nitrate reduction and shows a record-high faradaic efficiency of 99.7% at an ultralow potential of 0.1 ​V versus reversible hydrogen electrode. Experiments and theoretical calculations reveal that in addition to the faster proton transfer kinetics, the reaction pathway is strongly correlated with ∗H supply with the aid of CoP, that is, the direct hydrogenation of ∗NOH instead of deprotonation over Ru sites with the lowest energy barrier is promoted with the moderate production of ∗H species. This work provides new insights into the impact of ∗H species on the thermodynamics and kinetics of electrocatalytic nitrate reduction.

Abstract Image

活性氢对硝酸电化学还原途径选择的影响
在碱性条件下,硝酸盐的电化学还原反应涉及硝酸盐(NO3−)和水(H2O)两种反应物。虽然由水的解离产生的活性的* H种的重要性已被证明,反应途径和* H种之间的相关性经常被忽视。在此,Co(OH) 2-CoP负载的Ru纳米簇被设计用于电催化还原硝酸盐,并在0.1 V的超低电位下与可逆氢电极相比,显示出创纪录的99.7%的法拉第效率。实验和理论计算表明,除了更快的质子转移动力学外,反应途径与CoP提供的* H密切相关,即,适度的* H产生促进了* NOH的直接加氢而不是在能量最低的Ru位点上的去质子化。这项工作提供了新的见解,以影响* H物种对电催化硝酸还原热力学和动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信