超薄、多孔和有缺陷的氮化碳纳米片中的偶极子场,用于创纪录的高压电光催化H2O2生产

IF 42.9 Q1 ELECTROCHEMISTRY
Zhaoqiang Wang , Guixiang Ding , Hongwei Huang , Juntao Zhang , Qi Lv , Li Shuai , Yonghao Ni , Guangfu Liao
{"title":"超薄、多孔和有缺陷的氮化碳纳米片中的偶极子场,用于创纪录的高压电光催化H2O2生产","authors":"Zhaoqiang Wang ,&nbsp;Guixiang Ding ,&nbsp;Hongwei Huang ,&nbsp;Juntao Zhang ,&nbsp;Qi Lv ,&nbsp;Li Shuai ,&nbsp;Yonghao Ni ,&nbsp;Guangfu Liao","doi":"10.1016/j.esci.2024.100370","DOIUrl":null,"url":null,"abstract":"<div><div>Piezo-photocatalysis is capable of concerting mechanical vibration into chemical energy, portraying a promising alternative technology for H<sub>2</sub>O<sub>2</sub> production. However, low mechanical energy conversion efficiency and constrained surface active sites hinder its practical application. Herein, ultrathin porous carbon nitride nanosheets with controlled carbon vacancies and oxygen doping (OCN-X, where X represents the calcination temperature) are synthesized by thermal oxidation etching to achieve unprecedented piezo-photocatalytic H<sub>2</sub>O<sub>2</sub> production. The carbon vacancies and oxygen doping cause the formation of asymmetric structure of triazine unit with a strong dipole field, which creates spontaneous polarization field to speed up directional electron transfer to the nitrogen active sites for effective piezo-photocatalysis. Meanwhile, the ultrathin and porous structure formed by hot-oxygen etching enhances the mechanical energy conversion efficiency and collaboratively induces adsorbed oxygen via indirect two-electron oxygen reduction reaction (ORR) transfer pathway to effectively produce H<sub>2</sub>O<sub>2</sub>. Consequently, without any co-catalysts, the as-prepared OCN-460 displays record-high piezo-photocatalytic H<sub>2</sub>O<sub>2</sub> production rate of 19.30 ​mmol ​g<sup>−1</sup> ​h<sup>−1</sup>, far outdistancing those previously reported for piezo-photocatalysts. Furthermore, it also still maintains a notable piezo-photocatalytic activity of 2.87 ​mmol ​g<sup>−1</sup> ​h<sup>−1</sup> in the pure water system. This work offers some new insights for the future design of an effective piezo-photocatalytic H<sub>2</sub>O<sub>2</sub> production system.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 3","pages":"Article 100370"},"PeriodicalIF":42.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the dipole field in ultrathin, porous, and defective carbon nitride nanosheets for record-high piezo-photocatalytic H2O2 production\",\"authors\":\"Zhaoqiang Wang ,&nbsp;Guixiang Ding ,&nbsp;Hongwei Huang ,&nbsp;Juntao Zhang ,&nbsp;Qi Lv ,&nbsp;Li Shuai ,&nbsp;Yonghao Ni ,&nbsp;Guangfu Liao\",\"doi\":\"10.1016/j.esci.2024.100370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Piezo-photocatalysis is capable of concerting mechanical vibration into chemical energy, portraying a promising alternative technology for H<sub>2</sub>O<sub>2</sub> production. However, low mechanical energy conversion efficiency and constrained surface active sites hinder its practical application. Herein, ultrathin porous carbon nitride nanosheets with controlled carbon vacancies and oxygen doping (OCN-X, where X represents the calcination temperature) are synthesized by thermal oxidation etching to achieve unprecedented piezo-photocatalytic H<sub>2</sub>O<sub>2</sub> production. The carbon vacancies and oxygen doping cause the formation of asymmetric structure of triazine unit with a strong dipole field, which creates spontaneous polarization field to speed up directional electron transfer to the nitrogen active sites for effective piezo-photocatalysis. Meanwhile, the ultrathin and porous structure formed by hot-oxygen etching enhances the mechanical energy conversion efficiency and collaboratively induces adsorbed oxygen via indirect two-electron oxygen reduction reaction (ORR) transfer pathway to effectively produce H<sub>2</sub>O<sub>2</sub>. Consequently, without any co-catalysts, the as-prepared OCN-460 displays record-high piezo-photocatalytic H<sub>2</sub>O<sub>2</sub> production rate of 19.30 ​mmol ​g<sup>−1</sup> ​h<sup>−1</sup>, far outdistancing those previously reported for piezo-photocatalysts. Furthermore, it also still maintains a notable piezo-photocatalytic activity of 2.87 ​mmol ​g<sup>−1</sup> ​h<sup>−1</sup> in the pure water system. This work offers some new insights for the future design of an effective piezo-photocatalytic H<sub>2</sub>O<sub>2</sub> production system.</div></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"5 3\",\"pages\":\"Article 100370\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141724001691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724001691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

压电光催化能够将机械振动转化为化学能,是一种很有前途的H2O2生产替代技术。然而,机械能转换效率低和表面活性位点受限阻碍了其实际应用。本文采用热氧化刻蚀法合成了碳空位可控、氧掺杂的超薄多孔氮化碳纳米片(OCN-X,其中X代表煅烧温度),实现了前所未有的压电光催化制H2O2。碳空位和氧掺杂使三嗪单元形成不对称结构,具有强偶极子场,产生自发极化场,加速电子向氮活性位点的定向转移,实现有效的压电光催化。同时,热氧蚀刻形成的超薄多孔结构提高了机械能转换效率,并通过间接双电子氧还原反应(ORR)传递途径协同诱导吸附氧有效生成H2O2。因此,在没有任何辅助催化剂的情况下,制备的OCN-460显示出创纪录的压电光催化H2O2产率,达到19.30 mmol g−1 h−1,远远超过之前报道的压电光催化剂。此外,它在纯水体系中仍保持着2.87 mmol g−1 h−1的压电光催化活性。这项工作为未来设计有效的压电光催化H2O2生产系统提供了一些新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling the dipole field in ultrathin, porous, and defective carbon nitride nanosheets for record-high piezo-photocatalytic H2O2 production

Unraveling the dipole field in ultrathin, porous, and defective carbon nitride nanosheets for record-high piezo-photocatalytic H2O2 production
Piezo-photocatalysis is capable of concerting mechanical vibration into chemical energy, portraying a promising alternative technology for H2O2 production. However, low mechanical energy conversion efficiency and constrained surface active sites hinder its practical application. Herein, ultrathin porous carbon nitride nanosheets with controlled carbon vacancies and oxygen doping (OCN-X, where X represents the calcination temperature) are synthesized by thermal oxidation etching to achieve unprecedented piezo-photocatalytic H2O2 production. The carbon vacancies and oxygen doping cause the formation of asymmetric structure of triazine unit with a strong dipole field, which creates spontaneous polarization field to speed up directional electron transfer to the nitrogen active sites for effective piezo-photocatalysis. Meanwhile, the ultrathin and porous structure formed by hot-oxygen etching enhances the mechanical energy conversion efficiency and collaboratively induces adsorbed oxygen via indirect two-electron oxygen reduction reaction (ORR) transfer pathway to effectively produce H2O2. Consequently, without any co-catalysts, the as-prepared OCN-460 displays record-high piezo-photocatalytic H2O2 production rate of 19.30 ​mmol ​g−1 ​h−1, far outdistancing those previously reported for piezo-photocatalysts. Furthermore, it also still maintains a notable piezo-photocatalytic activity of 2.87 ​mmol ​g−1 ​h−1 in the pure water system. This work offers some new insights for the future design of an effective piezo-photocatalytic H2O2 production system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信