稳定锂/钽金属电池的异质结构设计:进展与前景

IF 42.9 Q1 ELECTROCHEMISTRY
Hongyang Chen , Junxiong Wu , Manxian Li , Jingyue Zhao , Zulin Li , Manxi Wang , Xuan Li , Chuanping Li , Xiaochuan Chen , Xiaoyan Li , Yiu-Wing Mai , Yuming Chen
{"title":"稳定锂/钽金属电池的异质结构设计:进展与前景","authors":"Hongyang Chen ,&nbsp;Junxiong Wu ,&nbsp;Manxian Li ,&nbsp;Jingyue Zhao ,&nbsp;Zulin Li ,&nbsp;Manxi Wang ,&nbsp;Xuan Li ,&nbsp;Chuanping Li ,&nbsp;Xiaochuan Chen ,&nbsp;Xiaoyan Li ,&nbsp;Yiu-Wing Mai ,&nbsp;Yuming Chen","doi":"10.1016/j.esci.2024.100281","DOIUrl":null,"url":null,"abstract":"<div><div>The growth of dendrites in Li/Na metal batteries is a multifaceted process that is controlled by several factors such as electric field, ion transportation, temperature, and pressure. Rational design of battery components has become a viable approach to address this challenge. Among the various design strategies, heterogeneous structures have been demonstrated to be effective in mitigating uneven metal deposition by reducing the local current density and regulating the deposition sites. In this review, we discuss comprehensively the underlying principles and factors that influence dendrite growth, as well as the synthesis approaches for heterogeneous structures. Furthermore, we provide an overview of the diverse applications of heterogeneous structures in battery components. Finally, we highlight existing challenges and future directions for the use of heterogeneous structures in regulating metal deposition.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100281"},"PeriodicalIF":42.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous structure design for stable Li/Na metal batteries: Progress and prospects\",\"authors\":\"Hongyang Chen ,&nbsp;Junxiong Wu ,&nbsp;Manxian Li ,&nbsp;Jingyue Zhao ,&nbsp;Zulin Li ,&nbsp;Manxi Wang ,&nbsp;Xuan Li ,&nbsp;Chuanping Li ,&nbsp;Xiaochuan Chen ,&nbsp;Xiaoyan Li ,&nbsp;Yiu-Wing Mai ,&nbsp;Yuming Chen\",\"doi\":\"10.1016/j.esci.2024.100281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growth of dendrites in Li/Na metal batteries is a multifaceted process that is controlled by several factors such as electric field, ion transportation, temperature, and pressure. Rational design of battery components has become a viable approach to address this challenge. Among the various design strategies, heterogeneous structures have been demonstrated to be effective in mitigating uneven metal deposition by reducing the local current density and regulating the deposition sites. In this review, we discuss comprehensively the underlying principles and factors that influence dendrite growth, as well as the synthesis approaches for heterogeneous structures. Furthermore, we provide an overview of the diverse applications of heterogeneous structures in battery components. Finally, we highlight existing challenges and future directions for the use of heterogeneous structures in regulating metal deposition.</div></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"5 1\",\"pages\":\"Article 100281\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266714172400065X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266714172400065X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heterogeneous structure design for stable Li/Na metal batteries: Progress and prospects

Heterogeneous structure design for stable Li/Na metal batteries: Progress and prospects
The growth of dendrites in Li/Na metal batteries is a multifaceted process that is controlled by several factors such as electric field, ion transportation, temperature, and pressure. Rational design of battery components has become a viable approach to address this challenge. Among the various design strategies, heterogeneous structures have been demonstrated to be effective in mitigating uneven metal deposition by reducing the local current density and regulating the deposition sites. In this review, we discuss comprehensively the underlying principles and factors that influence dendrite growth, as well as the synthesis approaches for heterogeneous structures. Furthermore, we provide an overview of the diverse applications of heterogeneous structures in battery components. Finally, we highlight existing challenges and future directions for the use of heterogeneous structures in regulating metal deposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信